Skip to main content
Log in

Optimization of operating conditions of the Fischer–Tropsch synthesis based on multi-objective differential evolution algorithm

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A study on the Fischer–Tropsch synthesis was investigated employing a one-dimensional non-isothermal model in a fixed-bed reactor over a Co/Al2O3 catalyst. The reaction kinetic follows a semi-empirical approach. Under multiple operating conditions and compared to experimental results, the presented model appropriately describes the product distribution. Afterward, optimizations using single- and multi-objective differential evolution (DE) algorithms were conducted. The minimum CH4 selectivity and maximum CO conversion were obtained, through the single-objective DE optimization. The results indicate that the improvement of one objective is only reached by making reductions to the other objective, i.e., a trade-off between objectives. The optimal operating conditions employing the multi-objective algorithm found GHSV = 4002.17 \({\text{Nml}}\;{\text{g}}_{{{\text{cat}}}}^{ - 1} {\text{h}}^{ - 1}\), H2/CO = 2.7, T = 501.63 K, P = 22.7 bar, and no inert content (%N2 = 0). Conditions that yielded optimized CO conversion and CH4 selectivity, respectively, of 60.21 and 6.65%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C j :

Molar concentration of species j [mol m3]

C p :

Mixture heat capacity [J Kg1 K1]

d p :

Catalyst particle diameter [m]

d i :

Reactor inner diameter [m]

L :

Reactor length [m]

M m :

Average molar mass [g mol1]

P :

Total pressure [bar]

R :

Universal gas constant [J mol1 K1]

r :

H2/CO molar ratio

r FT :

Global Fischer–Tropsch reaction rate [\({\text{mol g}}_{{{\text{cat}}}}^{ - 1} {\text{ s}}^{ - 1}\)]

r j :

Rate of consumption/production of species j [\({\text{mol g}}_{{{\text{cat}}}}^{ - 1} {\text{ s}}^{ - 1}\)]

r WGS :

Water–gas shift reaction rate [\({\text{mol g}}_{{{\text{cat}}}}^{ - 1} {\text{ s}}^{ - 1}\)]

S Cn :

Hydrocarbon selectivity n [%]

T :

Temperature [°C] or [K]

T w :

Reactor inner wall temperature [°C] or [K]

U :

Overall heat transfer coefficient [W m2 K1]

u s :

Superficial velocity [m s1]

x CO :

Carbon monoxide conversion [%

ASF:

Anderson–Shultz–Flory

BDF:

Backward differentiation formula

CSTR:

Continuous stirred tank reactor

DE:

Differential evolution

FBR:

Fluidized bed reactor

FTS or FT:

Fischer–Tropsch synthesis

GHSV:

Gas hourly space velocity [\({\text{Nml g}}_{{{\text{cat}}}}^{ - 1} {\text{ h}}^{ - 1}\)]

HTFT:

High-temperature Fischer–Tropsch

LTFT:

Low-temperature Fischer–Tropsch

MODE:

Multi-objective differential evolution

PBR:

Packed or fixed-bed reactor

RMSE:

Root-mean-square error

SBR:

Slurry bed reactor

STTR:

Straight through transport reactor

TOPSIS:

Technique for order of preference by similarity to ideal solution

WGS:

Water–gas shift

0 :

Initial condition

i :

Reaction "i"

j :

Chemical species "j"

n :

Carbon number

α n :

Chain growth probability

ΔH i :

Enthalpy of reaction i [KJ mol1]

ε :

Reactor bed porosity

θ :

Catalysis active sites

μ m :

Mixture viscosity [Pa s]

ρ b :

Catalytic bed density or bulk density [Kg m3]

ρ f :

Fluid density [Kg m3

References

  1. IEA (2019) Global Energy & CO2 Status Report 2019. IEA, Paris. https://www.iea.org/reports/global-energy-co2-status-report-2019

  2. IPCC (2018) Global Warming of 1.5 °C. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (in press). https://www.ipcc.ch/sr15/download/

  3. Wang YN, Li YW, Bai L et al (1999) Correlation for gas–liquid equilibrium prediction in Fischer–Tropsch synthesis. Fuel 78:911–917. https://doi.org/10.1016/S0016-2361(99)00020-4

    Article  Google Scholar 

  4. da Fonseca DV, da Silva JD (2020) Mathematical modelling of the solar-driven steam reforming of methanol for a solar thermochemical micro-fluidized bed reformer: thermal performance and thermochemical conversion. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02529-6

    Article  Google Scholar 

  5. Moazami N, Wyszynski ML, Rahbar K et al (2017) A comprehensive study of kinetics mechanism of Fischer–Tropsch synthesis over cobalt-based catalyst. Chem Eng Sci 171:32–60. https://doi.org/10.1016/j.ces.2017.05.022

    Article  Google Scholar 

  6. Ellepola J, Thijssen N, Grievink J et al (2012) Development of a synthesis tool for Gas–To–Liquid complexes. Comput Chem Eng 42:2–14. https://doi.org/10.1016/J.COMPCHEMENG.2011.12.005

    Article  Google Scholar 

  7. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. https://doi.org/10.1021/cr050972v

    Article  Google Scholar 

  8. Borg Ø, Eri S, Blekkan EA et al (2007) Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248:89–100. https://doi.org/10.1016/j.jcat.2007.03.008

    Article  Google Scholar 

  9. Davis BH (2002) Overview of reactors for liquid phase Fischer–Tropsch synthesis. Catal Today 71:249–300. https://doi.org/10.1016/S0920-5861(01)00455-2

    Article  Google Scholar 

  10. dos Anjos EB, da Silva Filho AM, da Silva JD (2020) Numerical simulation of the steam reforming of toluene in a fixed-bed catalytic reactor to produce hydrogen. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-2195-8

    Article  Google Scholar 

  11. Kerkar AV, Joseph S, Shah YT (1987) Some aspects of theoretical comparison of Fischer–Tropsch reactors. Chem Eng Commun 54:225–239. https://doi.org/10.1080/00986448708911908

    Article  Google Scholar 

  12. Yang J, Liu Y, Chang J et al (2003) Detailed kinetics of Fischer–Tropsch synthesis on an industrial Fe–Mn catalyst. Ind Eng Chem Res 42:5066–5090

    Article  Google Scholar 

  13. Kwack SH, Bae JW, Park MJ et al (2011) Reaction modeling on the phosphorous-treated Ru/Co/Zr/SiO2 Fischer–Tropsch catalyst with the estimation of kinetic parameters and hydrocarbon distribution. Fuel 90:1383–1394. https://doi.org/10.1016/j.fuel.2011.01.010

    Article  Google Scholar 

  14. Hwang DY, Choi JH, Kim YH et al (2011) Optimization strategy for a fischer-Tropsch synthesis bench-scale reactor: effect of objective elements on optimization performance. Chem Eng Commun 198:1075–1092. https://doi.org/10.1080/00986445.2011.552027

    Article  Google Scholar 

  15. Nabipoor Hassankiadeh M, Haghtalab A (2013) Product distribution of Fischer–Tropsch synthesis in a slurry bubble column reactor based on Langmuir–Freundlich isotherm. Chem Eng Commun 200:1170–1186. https://doi.org/10.1080/00986445.2012.742432

    Article  Google Scholar 

  16. Ghouri MM, Afzal S, Hussain R et al (2016) Multi-scale modeling of fixed-bed Fischer Tropsch reactor. Comput Chem Eng 91:38–48. https://doi.org/10.1016/j.compchemeng.2016.03.035

    Article  Google Scholar 

  17. Mosayebi A, Mehrpouya MA, Abedini R (2016) The development of new comprehensive kinetic modeling for Fischer–Tropsch synthesis process over Co-Ru/γ-Al2O3 nano-catalyst in a fixed-bed reactor. Chem Eng J 286:416–426. https://doi.org/10.1016/j.cej.2015.10.087

    Article  Google Scholar 

  18. Park N, Kim JR, Yoo Y et al (2014) Modeling of a pilot-scale fixed-bed reactor for iron-based Fischer–Tropsch synthesis: two-dimensional approach for optimal tube diameter. Fuel 122:229–235. https://doi.org/10.1016/j.fuel.2014.01.044

    Article  Google Scholar 

  19. Hedrick SA, Chuang SSC (2003) Modeling the Fischer–Tropsch reaction in a slurry bubble column reactor. Chem Eng Commun 190:445–474. https://doi.org/10.1080/00986440302083

    Article  Google Scholar 

  20. Moazami N, Wyszynski ML, Mahmoudi H et al (2015) Modelling of a fixed bed reactor for Fischer–Tropsch synthesis of simulated N2-rich syngas over Co/SiO2: hydrocarbon production. Fuel 154:140–151. https://doi.org/10.1016/j.fuel.2015.03.049

    Article  Google Scholar 

  21. Visconti CG, Lietti L, Tronconi E, Rossini S (2016) Kinetics of low-temperature Fischer–Tropsch synthesis on cobalt catalysts: Are both slurry autoclave and tubular packed-bed reactors adequate to collect relevant data at lab-scale? Can J Chem Eng 94:685–695. https://doi.org/10.1002/cjce.22429

    Article  Google Scholar 

  22. Méndez CI, Ancheyta J (2019) Dynamic one-dimensional pseudohomogeneous model for Fischer–Tropsch fixed-bed reactors. Fuel 252:371–392. https://doi.org/10.1016/j.fuel.2019.04.100

    Article  Google Scholar 

  23. Jess A, Popp R, Hedden K (1999) Fischer–Tropsch-synthesis with nitrogen-rich syngas: fundamentals and reactor design aspects. Appl Catal A Gen 186:321–342. https://doi.org/10.1016/S0926-860X(99)00152-0

    Article  Google Scholar 

  24. Philippe R, Lacroix M, Dreibine L et al (2009) Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed. Catal Today 147:S305–S312. https://doi.org/10.1016/j.cattod.2009.07.058

    Article  Google Scholar 

  25. Chabot G, Guilet R, Cognet P, Gourdon C (2015) A mathematical modeling of catalytic milli-fixed bed reactor for Fischer–Tropsch synthesis: Influence of tube diameter on Fischer Tropsch selectivity and thermal behavior. Chem Eng Sci 127:72–83. https://doi.org/10.1016/j.ces.2015.01.015

    Article  Google Scholar 

  26. Nassar R, Too JR, Fan LT (1986) A probabilistic model of the Fischer–Tropsch synthesis in a flow reactor. Chem Eng Commun 43:287–300. https://doi.org/10.1080/00986448608911337

    Article  Google Scholar 

  27. Anderson RB, Friedel RA, Storch HH (1951) Fischer-tropsch reaction mechanism involving stepwise growth of carbon chain. J Chem Phys 19:313–319. https://doi.org/10.1063/1.1748201

    Article  Google Scholar 

  28. Moazami N, Wyszynski ML, Rahbar K, Tsolakis A (2017) Parametric study and multiobjective optimization of fixed-bed Fischer–Tropsch (FT) reactor: the improvement of FT synthesis product formation and synthetic conversion. Ind Eng Chem Res 56:9446–9466. https://doi.org/10.1021/acs.iecr.7b02025

    Article  Google Scholar 

  29. Rafiq MH, Jakobsen HA, Schmid R, Hustad JE (2011) Experimental studies and modeling of a fixed bed reactor for Fischer–Tropsch synthesis using biosyngas. Fuel Process Technol 92:893–907. https://doi.org/10.1016/j.fuproc.2010.12.008

    Article  Google Scholar 

  30. Shin DY, Ha KS, Park MJ et al (2015) CFD modeling of a modular reactor for the Fischer–Tropsch synthesis: effectiveness of a micro-scale cross-current cooling channel. Fuel 158:826–834. https://doi.org/10.1016/j.fuel.2015.06.040

    Article  Google Scholar 

  31. Qian W, Zhang H, Ying W, Fang D (2013) The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism. Chem Eng J 228:526–534. https://doi.org/10.1016/j.cej.2013.05.039

    Article  Google Scholar 

  32. Hosseini-Ardali SM, Hazrati-Kalbibaki M, Fattahi M, Lezsovits F (2020) Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy 211:119035. https://doi.org/10.1016/j.energy.2020.119035

    Article  Google Scholar 

  33. Fazlinezhad A, Fattahi M, Tavakoli-Chaleshtori R, Rezaveisi H (2022) Sensitivity analysis and multi-objective optimization of oxidative dehydrogenation of propane in a fixed-bed reactor over vanadium/graphene for propylene production. Chem Eng Technol 45:309–318. https://doi.org/10.1002/ceat.202100399

    Article  Google Scholar 

  34. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl Catal A Gen. https://doi.org/10.1016/0926-860X(95)00306-1

    Article  Google Scholar 

  35. Jager B, Espinoza R (1995) Advances in low temperature Fischer–Tropsch synthesis. Catal Today 23:17–28. https://doi.org/10.1016/0920-5861(94)00136-P

    Article  Google Scholar 

  36. van Berge PJ, Everson RC (1997) Cobalt as an alternative Fischer–Tropsch catalyst to iron for the production of middle distillates. Stud Surf Sci Catal 107:207–212. https://doi.org/10.1016/s0167-2991(97)80336-9

    Article  Google Scholar 

  37. Dry ME (2004) Chemical concepts used for engineering purposes. Stud Surf Sci Catal 152:196–257. https://doi.org/10.1016/S0167-2991(04)80460-9

    Article  Google Scholar 

  38. Visconti CG, Tronconi E, Lietti L et al (2007) Development of a complete kinetic model for the Fischer–Tropsch synthesis over Co/Al2O3 catalysts. Chem Eng Sci 62:5338–5343. https://doi.org/10.1016/j.ces.2006.12.064

    Article  Google Scholar 

  39. Visconti CG, Ballova Z, Lietti L, et al (2009) Detailed kinetic study and modeling of the Fischer–Tropsch synthesis over a state-of-the-art cobalt based catalyst. In: Advances in Fischer–Tropsch synthesis, catalysts, and catalysis, 1st ed. CRC Press, Boca Raton, pp 294–314

  40. Visconti CG, Lietti L, Tronconi E et al (2009) Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl Catal A Gen 355:61–68. https://doi.org/10.1016/j.apcata.2008.11.027

    Article  Google Scholar 

  41. Visconti CG, Tronconi E, Lietti L et al (2011) Detailed kinetics of the fischer-tropsch synthesis on cobalt catalysts based on H-assisted CO activation. Top Catal 54:786–800. https://doi.org/10.1007/s11244-011-9700-3

    Article  Google Scholar 

  42. Visconti CG, Mascellaro M (2013) Calculating the product yields and the vapor-liquid equilibrium in the low-temperature Fischer–Tropsch synthesis. Catal Today 214:61–73. https://doi.org/10.1016/j.cattod.2012.10.016

    Article  Google Scholar 

  43. Fratalocchi L, Visconti CG, Lietti L et al (2015) A novel preparation method for “small” eggshell Co/γ-Al2O3 catalysts: a promising catalytic system for compact Fischer–Tropsch reactors. Catal Today 246:125–132. https://doi.org/10.1016/j.cattod.2014.09.020

    Article  Google Scholar 

  44. Fratalocchi L, Visconti CG, Lietti L et al (2018) A promising preparation method for highly active cobalt based Fischer–Tropsch catalysts supported on stabilized Al2O3. Appl Catal A Gen 556:92–103. https://doi.org/10.1016/j.apcata.2018.02.002

    Article  Google Scholar 

  45. Schulz H (2007) Comparing Fischer–Tropsch synthesis on iron- and cobalt catalysts. The dynamics of structure and function. Elsevier B.V.

  46. Yates IC, Satterfield CN (1991) Intrinsic kinetics of the Fischer–Tropsch synthesis on a cobalt catalyst. Energy Fuels 5:168–173

    Article  Google Scholar 

  47. Singh CPP, Saraf DN (1977) Simulation of high-temperature water–gas shift reactors. Ind Eng Chem Process Des Dev 16:313–319. https://doi.org/10.1021/i260063a012

    Article  Google Scholar 

  48. Graaf GH, Sijtsema PJJM, Stamhuis EJ, Joosten GEH (1986) Chemical equilibria in methanol synthesis. Chem Eng Sci 41:2883–2890. https://doi.org/10.1016/0009-2509(86)80019-7

    Article  Google Scholar 

  49. Lee TS, Chung JN (2012) Mathematical modeling and numerical simulation of a Fischer–Tropsch packed bed reactor and its thermal management for liquid hydrocarbon fuel production using biomass syngas. Energy Fuels 26:1363–1379. https://doi.org/10.1021/ef201667a

    Article  Google Scholar 

  50. Kuipers EW, Scheper C, Wilson JH et al (1996) Non-ASF product distributions due to secondary reactions during Fischer–Tropsch synthesis. J Catal 158:288–300. https://doi.org/10.1006/jcat.1996.0028

    Article  Google Scholar 

  51. Van Der Laan GP, Beenackers AACM (2000) Intrinsic kinetics of the gas-solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst. Appl Catal A Gen 193:39–53. https://doi.org/10.1016/S0926-860X(99)00412-3

    Article  Google Scholar 

  52. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer–Tropsch synthesis. J Catal 15:190–199. https://doi.org/10.1016/0021-9517(69)90023-2

    Article  Google Scholar 

  53. Chernobaev II, Yakubovich AI, Tripol’skií AI, et al (1997) investigation of the mechanism of methane formation in the Fischer–Tropsch synthesis on a Co/SiO2.Zr catalyst. Theor Exp Chem 33:38–40

    Article  Google Scholar 

  54. Sari A, Zamani Y, Taheri SA (2009) Intrinsic kinetics of Fischer–Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor. Fuel Process Technol 90(10):1305–1313. https://doi.org/10.1016/j.fuproc.2009.06.024

    Article  Google Scholar 

  55. Zhang Y, Wei D, Hammache S, Goodwin JG (1999) Effect of water vapor on the reduction of Ru-promoted Co/Al2O3. J Catal 188:281–290. https://doi.org/10.1006/JCAT.1999.2666

    Article  Google Scholar 

  56. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  57. Deng T, Tang P, Lin CS, Li X (2018) Multi-objective trade-off optimal control of energy management for hybrid system. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1146-0

    Article  Google Scholar 

  58. Coelho LDS, Mariani VC, Ferreira Da Luz MV, Leite JV (2013) Novel gamma differential evolution approach for multiobjective transformer design optimization. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2013.2243134

    Article  Google Scholar 

  59. Coelho LS, Mariani VC, Leite JV (2012) Solution of Jiles–Atherton vector hysteresis parameters estimation by modified differential evolution approaches. Expert Syst Appl 39(2):2021–2025. https://doi.org/10.1016/j.eswa.2011.08.035

    Article  Google Scholar 

  60. Goulart F, Campelo F (2016) Preference-guided evolutionary algorithms for many-objective optimization. Inf Sci (NY) 329:236–255. https://doi.org/10.1016/j.ins.2015.09.015

    Article  Google Scholar 

  61. Vasconcelos Segundo EH, de, Amoroso AL, Mariani VC, Coelho L dos S (2017) Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution. Appl Therm Eng 111:143–151. https://doi.org/10.1016/j.applthermaleng.2016.09.032

    Article  Google Scholar 

  62. Robič T, Filipič B (2005) DEMO: Differential evolution for multiobjective optimization. In: Lecture notes in computer science, pp 520–533

  63. Deb K, Member A, Pratap A et al (2002) A fast and elitist multi-objective genetic algorithm: NSGAII. IEEE Trans Evolut Comput 6:182–197

    Article  Google Scholar 

  64. Hwang C, Yoon K (1981) Multiple Attribute Decision Making: Methods and Applications, 1st edn. Springer, New York

    Book  Google Scholar 

  65. Pradeep N, Shanmuga Sundaram K, Pradeep Kumar M (2019) Multi-response optimization of electrochemical micromachining parameters for SS304 using polymer graphite electrode with NaNO3 electrolyte based on TOPSIS technique. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1823-7

    Article  Google Scholar 

  66. Gavrilović L, Jørgensen EA, Pandey U et al (2021) Fischer-Tropsch synthesis over an alumina-supported cobalt catalyst in a fixed bed reactor—effect of process parameters. Catal Today 369:150–157. https://doi.org/10.1016/j.cattod.2020.07.055

    Article  Google Scholar 

  67. Vianna Neto JX, Guerra Junior EJ, Moreno SR et al (2018) Wind turbine blade geometry design based on multi-objective optimization using metaheuristics. Energy 162:645–658. https://doi.org/10.1016/j.energy.2018.07.186

    Article  Google Scholar 

  68. Bora TC, Mariani VC, dos Coelho L, S (2019) Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 146:688–700. https://doi.org/10.1016/j.applthermaleng.2018.10.020

    Article  Google Scholar 

  69. Galuzio PP, de Vasconcelos Segundo EH, dos Coelho L, S, Mariani VC (2020) MOBOpt—multi-objective Bayesian optimization. SoftwareX 12:100520. https://doi.org/10.1016/j.softx.2020.100520

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council of Scientific and Technological Development of Brazil—CNPq (Grants Number: 307966/2019-4-PQ, 405101/2016-3-Univ), PRONEX ‘Fundação Araucária’ 042/2018 for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius Reisdorfer Leite.

Additional information

Technical Editor: Mario Eduardo Santos Martins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, V.R., Fontana, É. & Mariani, V.C. Optimization of operating conditions of the Fischer–Tropsch synthesis based on multi-objective differential evolution algorithm. J Braz. Soc. Mech. Sci. Eng. 44, 490 (2022). https://doi.org/10.1007/s40430-022-03785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03785-4

Keywords

Navigation