Skip to main content
Log in

Probabilistic dipole BEM model for cohesive crack propagation analysis

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper addresses the application of the boundary element method (BEM) to plane problems in probabilistic fracture mechanics. BEM stands out as an interesting technique for crack propagation analysis, leading to a robust modelling of stress concentration in singular regions, besides attenuating remeshing aspects. The alternative BEM formulation employed herein is built in terms of a set of self-equilibrated forces, called dipole, which describes the cohesive zone. Regarding the nonlinear solution, the tangent operator is used to make it faster. The probabilistic assessment of the crack propagation analysis is carried out in two stages: the first consists of a simulation-based estimation of the random values of cohesive parameters and elastic modulus, by an inferential approach; and in the second, the influence of these parameters on the structural response is evaluated. The statistical correlation between the random variables is taken into account. BEM models are coupled to structural reliability routines based on both first-order reliability method and Latin hypercube sampling-based Monte Carlo simulation to compute failure probabilities and random force versus displacement and crack path curves. Some examples are presented to validate the proposed models and to illustrate their efficacy on the reliability-based assessment of cohesive crack modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Almeida LPR, Lima Jr ET, Barbirato JCC (2020) BEM-FORM Model for the probabilistic response of circular tunnels in elastic media. KSCE J Civ Eng 24: 2244–2255. https://doi.org/10.1007/s12205-020-5040-9.

  2. Melchers RE, Beck AT (2018) Structural reliability analysis and prediction, Wiley, Chichester, 514 p

  3. Leonel ED, Chateauneuf A, Venturini WS, Bressolette P (2010) Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation. Int J Fatigue 32(11):1823–1834. https://doi.org/10.1016/j.ijfatigue.2010.05.001

    Article  Google Scholar 

  4. Carpinteri A (1989) Post-peak and post-bifurcation analysis of cohesive crack growth. Engng Frac Mech 32:265–278. https://doi.org/10.1016/0013-7944(89)90299-3

    Article  Google Scholar 

  5. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engng Fract Mech 55:321–334. https://doi.org/10.1016/0013-7944(95)00247-2

    Article  Google Scholar 

  6. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Engng 45:601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S

    Article  MATH  Google Scholar 

  7. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J

    Article  MathSciNet  MATH  Google Scholar 

  8. Uger JF, Eckardt S, Könke C (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Methods Appl Mech Eng 196:4087–4100. https://doi.org/10.1016/j.cma.2007.03.023

    Article  MATH  Google Scholar 

  9. Mohammadi S (2008) Extended finite element method: for fracture analysis of structures. Blackwell, Oxford

    Book  Google Scholar 

  10. Li H, Li J, Yuan H (2018) A review of the extended finite element method on macrocrack and microcrack growth simulations. Theor Appl Fract Mech 97:236–249. https://doi.org/10.1016/j.tafmec.2018.08.008

    Article  Google Scholar 

  11. Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. Int J Numer Methods Eng 10:301–342. https://doi.org/10.1002/nme.1620100206

    Article  MATH  Google Scholar 

  12. Gospodinov G (2003) Boundary element modelling of cohesive cracks using displacement discontinuity method. Int J Solids Struct 19–26. https://doi.org/10.1016/j.ijsolstr.2011.05.009

  13. Chen E, Leung CK, Tang S, Lu C (2018) Displacement discontinuity method for cohesive crack propagation. Eng Fract Mech 190:319–330. https://doi.org/10.1016/j.engfracmech.2017.11.009

    Article  Google Scholar 

  14. Maier G, Novati G, Cen Z (1993) Symmetric galerkin boundary element method for quasi-brittle-fracture and frictional contact problems. Compd Mech 13:74–89. https://doi.org/10.1007/BF00350704

    Article  MATH  Google Scholar 

  15. Chen T, Wang B, Cen Z, Wu Z (1999) A symmetric galerkin multi-zone boundary element method for cohesive crack growth. Eng Frac Mech 63:591–609. https://doi.org/10.1016/S0013-7944(99)00036-3

    Article  Google Scholar 

  16. Sollero P, Aliabadi MH (1994) Anisotropy analysis of cracks emanating from circular holes in composite laminates using the boundary element. Eng Fract Mech 49:213–224. https://doi.org/10.1016/0013-7944(94)90004-3

    Article  Google Scholar 

  17. Peixoto RG, Ribeiro GO, Pitangueira RLS (2018) A boundary element method formulation for quasi-brittle material fracture analysis using the continuum strong discontinuity approach. Eng Frac Mech 202:47–74. https://doi.org/10.1016/j.engfracmech.2018.09.012

    Article  Google Scholar 

  18. Hong HK, Chen JT (1998) Derivations of integral equations of elasticity. J Eng Mech 114: 1028–1044

  19. Portela A, Aliabadi MH, Rooke DP (1992) The dual boundary element method: effective implementation for crack problems. Int J Numer Meth Eng 33:1269–1287

    Article  Google Scholar 

  20. Saleh AL, Aliabadi MH (1995) Crack-growth analysis in concrete using boundary element method. Eng Fract Mech 51(4). https://doi.org/10.1016/0013-7944(94)00301-W

  21. Chen JT, Hong HK (1999) Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Appl Mech Rev 52(1):17–33. https://doi.org/10.1115/1.3098922

    Article  Google Scholar 

  22. Leonel ED, Venturini WS (2010) Non-linear boundary element formulation with tangent operator to analyse crack propagation in quasi-brittle materials. Eng Anal Bound Elem 34:122–129. https://doi.org/10.1016/j.enganabound.2009.08.005

    Article  MathSciNet  MATH  Google Scholar 

  23. Price RJ, Trevelyan J (2014) Boundary element simulation of fatigue crack growth in multi-site damage. Eng Anal Bound Elem 43:67–75. https://doi.org/10.1016/j.enganabound.2014.03.002

    Article  MathSciNet  MATH  Google Scholar 

  24. Sato M, Moura LS, Galvis AF, Albuquerque EL, Sollero P (2019) Analysis of two-dimensional fatigue crack propagation in thin aluminum plates using the Paris law modified by a closure concept. Eng Anal Bound Elem 106:513–527. https://doi.org/10.1016/j.enganabound.2019.06.008

    Article  MathSciNet  MATH  Google Scholar 

  25. Santana E, Portela A (2016) Dual boundary element analysis of fatigue crack growth, interaction and linkup. Eng Anal Bound Elem 64:176–195. https://doi.org/10.1016/j.enganabound.2015.12.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiao S, Yue ZQ, Xiao H (2019) Dual boundary element method for analyzing three-dimensional cracks in layered and graded halfspaces. Eng Anal Bound 104:135–147. https://doi.org/10.1016/j.enganabound.2019.03.021

    Article  MathSciNet  MATH  Google Scholar 

  27. Cordeiro SGF, Leonel ED (2016) Cohesive crack propagation modelling in wood structures using BEM and the tangent operator technique. Eng Anal Bound Elem 64:111–121. https://doi.org/10.1016/j.enganabound.2015.11.013

    Article  MathSciNet  MATH  Google Scholar 

  28. Citarella R, Carlone P, Sepe R, Lepore M (2016) DBEM crack propagation in friction stir welded aluminum joints. Adv Eng Softw 101:50–59. https://doi.org/10.1016/j.advengsoft.2015.12.002

    Article  Google Scholar 

  29. Carlone P, Citarella R, Sonne MR, Hattel JH (2016) Multiple crack growth prediction in AA2024-T3 friction stir welded joints, including manufacturing effects. Int J Fatigue 90:69–77. https://doi.org/10.1016/j.ijfatigue.2016.04.004

    Article  Google Scholar 

  30. Citarella R, Giannela V, Lepore M, Dhondt G (2018) Dual boundary element method and finite element method for mixed-mode crack propagation simulations in a cracked hollow shaft. Fatigue Fract Eng Mater Struct 41(1):84–98. https://doi.org/10.1111/ffe.12655

    Article  Google Scholar 

  31. Rocha FS, Venturini WS (1988) Boundary element algorithm to solve discontinuity problems. In: Brebbia CA (ed) Boundary elements X: stress analysis, vol 3. Computational mechanics publications, Southampton, pp 107–118

    Google Scholar 

  32. Venturini WS (1994) A new boundary element formulation for crack analysis. In: Brebbia CA (ed) Boundary element method XVI, vol 7. Computational Mechanics Publications, Southampton, pp 405–412

    MATH  Google Scholar 

  33. Oliveira HL, Leonel ED (2013) Cohesive crack growth modelling based on an alternative nonlinear BEM formulation. Eng Fract Mech 111:86–97. https://doi.org/10.1016/j.engfracmech.2013.09.003

    Article  Google Scholar 

  34. Almeida LPR, Lima Jr ET, Barbirato JCC (2020) Cohesive crack propagation analysis using a dipole BEM formulation with tangent operator. Theor Appl Fract Mec 109: 102765. https://doi.org/10.1016/j.tafmec.2020.102765.

  35. Long XY, Jiang C, Han X, Gao W (2015) Stochastic response analysis of the scaled boundary finite element method and application to probabilistic fracture mechanics. Comput Struct 153:185–200. https://doi.org/10.1016/j.compstruc.2015.03.004

    Article  Google Scholar 

  36. Rahman S, Chen G (2005) Continuum shape sensitivity and reliability analyses of nonlinear cracked structures. Int J Fract 131(2):189–209. https://doi.org/10.1007/s10704-004-3948-6

    Article  MATH  Google Scholar 

  37. Huang X, Aliabadi MH (2011) Probabilistic fracture mechanics by the boundary element method. Int J Fract 171(1):51–64. https://doi.org/10.1007/s10704-011-9625-7

    Article  MATH  Google Scholar 

  38. Romlay FRM, Ouyang H, Ariffin AK, Mohamed NAN (2010) Modeling of fatigue crack propagation using dual boundary element method and Gaussian Monte Carlo method. Eng Anal Bound Elem 34:297–305. https://doi.org/10.1016/j.enganabound.2009.09.006

    Article  MathSciNet  MATH  Google Scholar 

  39. Leonel ED, Beck AT, Venturini WS (2011) On the performance of response surface and direct coupling approaches in solution of random crack propagation problems. Struct Saf 33:261–327. https://doi.org/10.1016/j.strusafe.2011.04.001

    Article  Google Scholar 

  40. Leonel ED, Chateauneuf A, Venturini WS (2012) Probabilistic crack growth analyses using a boundary element model: Applications in linear elastic fracture and fatigue problems. Eng Anal Bound Elem 36:944–959. https://doi.org/10.1016/j.enganabound.2011.12.016

    Article  MathSciNet  MATH  Google Scholar 

  41. Su C, Zheng C (2012) Probabilistic fracture mechanics analysis of linear-elastic cracked structures by spline fictitious boundary element method. Eng Anal Bound Elem 36(12):1828–1837. https://doi.org/10.1016/j.enganabound.2012.06.006

    Article  MathSciNet  MATH  Google Scholar 

  42. Chowdhury MS, Song C, Gao W (2011) Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method. Eng Fract Mech 78:2369–2389. https://doi.org/10.1016/j.engfracmech.2011.05.008

    Article  Google Scholar 

  43. Chowdhury MS, Song C, Gao W (2014) Probabilistic fracture mechanics with uncertainty in crack size and orientation using the scaled boundary finite element method. Comput Struct 137:93–103. https://doi.org/10.1016/j.compstruc.2013.03.002

    Article  Google Scholar 

  44. Morse L, Sharif Khodaei Z, Aliabadi MH (2018) A multi-fidelity modelling approach to the statistical inference of the equivalent initial flaw size distribution for multiple-site damage. Int J of Fatigue 120: 329–341. https://doi.org/10.1016/j.ijfatigue.2018.11.010

  45. Morse L, Sharif Khodaei Z, Aliabadi MH (2019) A dual boundary element based implicit differentiation method for determining stress intensity factor sensitivities for plate bending problems. Eng Anal Bound Elem 106: 412–426. https://doi.org/10.1016/j.enganabound.2019.05.021

  46. Morse L, Sharif Khodaei Z, Aliabadi MH (2020) Statistical inference of the equivalent initial flaw size for assembled plate structures with the dual boundary element method. Eng Fract Mech 238: 107271. https://doi.org/10.1016/j.engfracmech.2020.107271

  47. Cordeiro SGF, Leonel ED, Beaurepaire P (2017) Quantification of cohesive fracture parameters based on the coupling of Bayesian updating and the boundary element method. Eng Anal Bound Elem 744:49–60. https://doi.org/10.1016/j.enganabound.2016.10.010

    Article  MathSciNet  MATH  Google Scholar 

  48. Hillerborg A, Modeer M, Peterson PE (1976) Analysis of crack formation and crack growth in concrete by mean of failure mechanics and finite elements. Cem Concr Res 6:773–782. https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  49. Brebbia CA (1978) The boundary element method for engineers. Pentech Press, London

    Google Scholar 

  50. Yang Z, Frank Xu X (2008) A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties. Comput Meth Appl Mech Eng 197(45): 4027–4039. https://doi.org/10.1016/j.cma.2008.03.027

  51. Low BK, Tang WH (2007) Efficient spreadsheet algorithm for first-order reliability method. J Eng Mech 133(12): 1378–1387. https://doi.org/10.1061/(asce)0733-9399(2007)133:12(1378)

  52. Hasofer AM, Lind NC (1974) An exact and invariant first-order reliability format. J Eng Mech 100(1):111–121

    Google Scholar 

  53. Rackwitz R, Fiessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5): 489–494. https://doi.org/10.1016/0045-7949

  54. Li HZ, Low BK (2010) Reliability analysis of circular tunnel under hydrostatic stress field. Comput Geotech 37(1–2): 50–58. https://doi.org/10.1016/j.compgeo.2009.07.005

  55. Gálvez JC, Elices M, Guinea GV, Planas J (1998) Mixed mode fracture of concrete under mixed loading. Int J Fract 94: 267–284. https://doi.org/10.1023/A:1007578814070

  56. Cendon DA, Galvez JC, Elices M, Planas J (2000) Modelling the fracture of concrete under mixed loading. Int J Fract 103:293–310. https://doi.org/10.1023/A:1007687025575

    Article  Google Scholar 

  57. Bruggi M, Casciati S, Faravelli L (2008) Cohesive crack propagation in a random elastic medium. Prob Eng Mech 23(1):23–35. https://doi.org/10.1016/j.probengmech.2007.10.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordination for the Improvement of Higher Education Personnel – CAPES, for the scholarship provided to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Toledo de Lima Junior.

Additional information

Technical Editor: Andre T. Beck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, L.P.R., de Lima Junior, E.T. & Barbirato, J.C.C. Probabilistic dipole BEM model for cohesive crack propagation analysis. J Braz. Soc. Mech. Sci. Eng. 44, 485 (2022). https://doi.org/10.1007/s40430-022-03765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03765-8

Keywords

Navigation