Skip to main content

Advertisement

Log in

Artificial neural networks modelling for power coefficient of Archimedes screw turbine for hydropower applications

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Hydrokinetic turbines are the most efficient way to generate energy and electricity in hydropower applications. A hydrokinetic turbine’s operational characteristics and physical dimensions affect its efficiency. The relationship between the turbine’s geometric configuration and output is complicated and nonlinear. Thus, in the current work, a standalone artificial neural network (ANN) with a graphical user interface (GUI) was used to evaluate the performance of an Archimedes screw turbine (AST). This model used the geometrical configuration of the AST as input variables (axle length, blade stride, blade angle, and diameter ratio) and the power coefficient (Cp) as the only output. Among all the neural network topologies, the ANN model with a 4-3-1 architecture generated the lowest average error and root mean square error (RMSE), respectively, of 0.0211 and 0.0008. The predictions of the ANN model were extremely well congruent with available computational fluid dynamics (CFD) and second-order regression model (SORM) data. Additionally, a virtual hydropower system was developed to quantify the effect of AST factors on hydropower production efficiency. The ANN model projections indicate that the diameter ratio is the most sensitive parameter to AST performance, accounting for 84%, followed by blade stride and other factors. The results revealed that the developed model could accurately evaluate the relationship between the geometric configuration of the AST and its hydropower production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Martins F, Felgueiras C, Smitková M (2017) Mathematical modelling of Portuguese hydroelectric energy system. Energy Procedia 136:213–218. https://doi.org/10.1016/j.egypro.2017.10.241

    Article  Google Scholar 

  2. Kaunda CS, Kimambo CZ, Nielsen TK (2012) Hydropower in the context of sustainable energy supply: a review of technologies and challenges. ISRN Renew Energy 2012:1–15. https://doi.org/10.5402/2012/730631

    Article  Google Scholar 

  3. Waters S, Aggidis GA (2015) Over 2000 years in review: revival of the Archimedes screw from pump to turbine. Renew Sustain Energy Rev 51:497–505. https://doi.org/10.1016/j.rser.2015.06.028

    Article  Google Scholar 

  4. YoosefDoost A, Lubitz WD (2020) Archimedes screw turbines: a sustainable development solution for green and renewable energy generation-a review of potential and design procedures. Sustain. https://doi.org/10.3390/SU12187352

    Article  Google Scholar 

  5. Shahverdi K, Loni R, Ghobadian B, Monem MJ, Gohari S, Marofi S, Najafi G (2019) Energy harvesting using solar ORC system and Archimedes screw turbine (AST) combination with different refrigerant working fluids. Energy Convers Manag 187:205–220. https://doi.org/10.1016/j.enconman.2019.01.057

    Article  Google Scholar 

  6. Maulana MI, Darwin D, Putra GS (2019) Performance of single screw Archimedes turbine using transmission. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/536/1/012022

    Article  Google Scholar 

  7. Piper AT, Rosewarne PJ, Wright RM, Kemp PS (2018) The impact of an Archimedes screw hydropower turbine on fish migration in a lowland river. Ecol Eng 118:31–42. https://doi.org/10.1016/j.ecoleng.2018.04.009

    Article  Google Scholar 

  8. Havn TB, Sæther SA, Thorstad EB, Teichert MAK, Heermann L, Diserud OH, Borcherding J, Tambets M, Økland F (2017) Downstream migration of Atlantic salmon smolts past a low head hydropower station equippped with Archimedes screw and Francis turbines. Ecol Eng 105:262–275. https://doi.org/10.1016/j.ecoleng.2017.04.043

    Article  Google Scholar 

  9. Siswantara AI, Warjito Budiarso, Harmadi R, Gumelar MH, Adanta D (2019) Investigation of the α angle’s effect on the performance of an Archimedes turbine. Energy Procedia 156:458–462. https://doi.org/10.1016/j.egypro.2018.11.084

    Article  Google Scholar 

  10. Shahverdi K, Loni R, Ghobadian B, Gohari S, Marofi S, Bellos E (2020) NumericalOptimization study of Archimedes screw turbine (AST): a case study. Renew Energy 145:2130–2143. https://doi.org/10.1016/j.renene.2019.07.124

    Article  Google Scholar 

  11. Rohmer J, Knittel D, Sturtzer G, Flieller D, Renaud J (2016) Modeling and experimental results of an Archimedes screw turbine. Renew Energy 94:136–146. https://doi.org/10.1016/j.renene.2016.03.044

    Article  Google Scholar 

  12. Zitti G, Fattore F, Brunori A, Brunori B, Brocchini M (2020) Efficiency evaluation of a ductless Archimedes turbine: laboratory experiments and numerical simulations. Renew Energy 146:867–879. https://doi.org/10.1016/j.renene.2019.06.174

    Article  Google Scholar 

  13. Dellinger G, Garambois PA, Dellinger N, Dufresne M, Terfous A, Vazquez J, Ghenaim A (2018) Computational fluid dynamics modeling for the design of Archimedes Screw Generator. Renew Energy 118:847–857. https://doi.org/10.1016/j.renene.2017.10.093

    Article  Google Scholar 

  14. Shahverdi K, Loni R, Maestre JM, Najafi G (2021) CFD numerical simulation of Archimedes screw turbine with power output analysis. Ocean Eng 231:108718. https://doi.org/10.1016/j.oceaneng.2021.108718

    Article  Google Scholar 

  15. Dellinger G, Simmons S, Lubitz WD, Garambois PA, Dellinger N (2019) Effect of slope and number of blades on Archimedes screw generator power output. Renew Energy 136:896–908. https://doi.org/10.1016/j.renene.2019.01.060

    Article  Google Scholar 

  16. Lee MD, Lee PS (2021) Modelling the energy extraction from low-velocity stream water by small scale Archimedes screw turbine. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2021.04.006

    Article  Google Scholar 

  17. Narayana PL, Maurya AK, Wang XS, Harsha MR, Srikanth O, Alnuaim AA, Hatamleh WA, Hatamleh AA, Cho KK, Paturi UMR, Reddy NS (2021) Artificial neural networks modeling for lead removal from aqueous solutions using iron oxide nanocomposites from bio-waste mass. Environ Res. https://doi.org/10.1016/j.envres.2021.111370

    Article  Google Scholar 

  18. Tamura R, Osada T, Minagawa K, Kohata T, Hirosawa M, Tsuda K, Kawagishi K (2021) Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy. Mater Des 198:109290. https://doi.org/10.1016/j.matdes.2020.109290

    Article  Google Scholar 

  19. Żbikowski K, Antosiuk P (2021) A machine learning, bias-free approach for predicting business success using Crunchbase data. Inf Process Manag. https://doi.org/10.1016/j.ipm.2021.102555

    Article  Google Scholar 

  20. Sircar A, Yadav K, Rayavarapu K, Bist N, Oza H (2021) Application of machine learning and artificial intelligence in oil and gas industry. Pet Res. https://doi.org/10.1016/j.ptlrs.2021.05.009

    Article  Google Scholar 

  21. Lisicki M, Lubitz W, Taylor GW (2016) Optimal design and operation of Archimedes screw turbines using Bayesian optimization. Appl Energy 183:1404–1417. https://doi.org/10.1016/j.apenergy.2016.09.084

    Article  Google Scholar 

  22. Li B, Lee Y, Yao W, Lu Y, Fan X (2020) Development and application of ANN model for property prediction of supercritical kerosene. Comput Fluids. https://doi.org/10.1016/j.compfluid.2020.104665

    Article  MathSciNet  MATH  Google Scholar 

  23. Bouvant M, Betancour J, Velásquez L, Rubio-Clemente A, Chica E (2021) Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology. Renew Energy 172:941–954. https://doi.org/10.1016/j.renene.2021.03.076

    Article  Google Scholar 

  24. Li C-L, Narayana PL, Reddy NS, Choi S-W, Yeom J-T, Hong J-K, Park CH (2019) Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network. J Mater Sci Technol 35(5):907–916. https://doi.org/10.1016/j.jmst.2018.11.018

    Article  Google Scholar 

  25. Maurya AK, Reddy BS, Theerthagiri J, Narayana PL, Park CH, Hong JK, Yeom JT, Cho KK, Reddy NS (2021) Modeling and optimization of process parameters of biofilm reactor for wastewater treatment. Sci Total Environ 787:147624. https://doi.org/10.1016/j.scitotenv.2021.147624

    Article  Google Scholar 

  26. Maurya AK, Narayana PL, Bhavani AG, Jae-Keun H, Yeom JT, Reddy NS (2020) Modeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks. J Electrostat 104:103425. https://doi.org/10.1016/j.elstat.2020.103425

    Article  Google Scholar 

  27. A. Lee, Z.W. Geem, K.D. Suh, determination of optimal initial weights of an artificial neural network by Using the harmony search algorithm: Application to breakwater armor stones, Appl. Sci. 6 (2016). https://doi.org/10.3390/app6060164.

  28. Jiang Z, Zhang Z, Friedrich K (2007) Prediction on wear properties of polymer composites with artificial neural networks. Compos Sci Technol 67:168–176. https://doi.org/10.1016/j.compscitech.2006.07.026

    Article  Google Scholar 

  29. Paturi UMR, Suryapavan C, Reddy NS (2022) The role of artificial neural networks in prediction of mechanical and tribological properties of composites-A comprehensive review. Arch Computat Methods Eng 29:3109–3149. https://doi.org/10.1007/s11831-021-09691-7

    Article  MathSciNet  Google Scholar 

  30. Reddy BRS, Premasudha M, Panigrahi BB, Cho KK, Reddy NGS (2020) Modeling constituent–property relationship of polyvinylchloride composites by neural networks. Polym Compos 41:3208–3217. https://doi.org/10.1002/pc.25612

    Article  Google Scholar 

  31. Sadan MK, Ahn HJ, Chauhan GS, Reddy NS (2016) Quantitative estimation of poly (methyl methacrylate) nano-fiber membrane diameter by artificial neural networks. Eur Polym J 74:91–100. https://doi.org/10.1016/j.eurpolymj.2015.11.014

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uma Maheshwera Reddy Paturi or N. S. Reddy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paturi, U.M.R., Cheruku, S. & Reddy, N.S. Artificial neural networks modelling for power coefficient of Archimedes screw turbine for hydropower applications. J Braz. Soc. Mech. Sci. Eng. 44, 447 (2022). https://doi.org/10.1007/s40430-022-03757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03757-8

Keywords

Navigation