Skip to main content
Log in

A mesh stiffness model with the asperity contact for spur gear in mixed elastohydrodynamic lubrication

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The gear time-varying mesh stiffness (TVMS) calculation is the basis for analyzing gear dynamics, which has considerable effects on the optimal design of gear parameters. Gear drives generally operate in mixed elastohydrodynamic lubrication (EHL), and it is significant to investigate the time-varying mesh stiffness for spur gear pairs in mixed EHL. In this work, a novel TVMS model for spur gear in mixed EHL is presented in consideration of asperity contact stiffness and oil film stiffness. The influences of gear geometric and operation parameters on TVMS are analyzed. The TVMS of spur gear pair in mixed EHL is found to be larger than that in dry contact. Results show that TVMS reduces with the increased module but increases with the large pressure angle. When tooth number of pinion is closer to that of gear, the gear TVMS becomes large. Moreover, the fluctuations of velocity and torque have a negligible effect on the TVMS of the spur gear in mixed EHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A n :

Nominal contact area (mm2)

A a :

Asperity contact area (mm2)

a H :

Half contact width (mm)

B :

Tooth width (mm)

d :

Separation based on asperity heights (mm)

d 0 :

Initial separation (mm)

d c :

Iteration step (mm)

E eq :

Equivalent elastic modulus (Pa)

F a :

Total asperity contact load (N)

F at :

Asperity contact load (N)

F n :

Normal load (N)

G :

Dimensionless elasticity modulus

H :

Surface hardness (Gpa)

H c :

Dimensionless central film thickness

h c :

Central film thickness (mm)

L a :

Asperity contact ratio (%)

k a :

Axial compressive stiffness (N/mm)

k ac :

Asperity contact stiffness (N/mm)

k b :

Tooth bending stiffness (N/mm)

k c :

Contact stiffness (N/mm)

k t :

Tooth stiffness (N/mm)

k f :

Tooth bending stiffness (N/mm)

k m :

Mesh stiffness of gear pair (N/mm)

k o :

Oil film stiffness (N/mm)

k s :

Shear stiffness (N/mm)

p :

Contact pressure (Pa)

p h :

Oil film pressure (Pa)

R c :

Curvature radius (mm)

R a :

Surface roughness (μm)

R Ra :

Asperity radius (mm)

U :

Dimensionless rolling speed

u r :

Rolling velocity of contact position (mm/s)

V :

Dimensionless surface hardness

W :

Dimensionless load

z :

Asperity height (mm)

α :

Pressure-viscosity coefficient (Pa1)

μ 0 :

Lubricating oil viscosity (Pa·s)

δ :

Asperity deformation (mm)

ν :

Poisson ratio of gear material

λ :

Correction coefficient of kf

p,g :

Driving gear, driven gear

References

  1. Zhou C, Xing M, Hu B, Shi Z (2020) A modified wear model considering contact temperature for spur gears in mixed elastohydrodynamic lubrication. Tribol Lett 68(4):1–17

    Article  Google Scholar 

  2. Hu B, Zhou C, Wang H, Yin L (2021) Prediction and validation of dynamic characteristics of a valve train system with flexible components and gyroscopic effect. Mech Mach Theory 157:104222

    Article  Google Scholar 

  3. Zhou C, Xiao Z, Chen S, Han X (2017) Normal and tangential oil film stiffness of modified spur gear with non-Newtonian elastohydrodynamic lubrication. Tribol Int 109:319–327

    Article  Google Scholar 

  4. Liu H, Liu H, Zhu C, Parker R (2020) Effects of lubrication on gear performance: A review. Mech Mach Theory 145:103701

    Article  Google Scholar 

  5. Hedlund J, Lehtovaara A (2008) A parameterized numerical model for the evaluation of gear mesh stiffness variation of a helical gear pair. Proc Inst Mech Eng C-J Mech Eng Sci 222(7):1321–1327

    Article  Google Scholar 

  6. Del Rincon A, Viadero F, Iglesias M, García P, De-Juan A, Sancibrian R (2013) A model for the study of meshing stiffness in spur gear transmissions. Mech Mach Theory 61:30–58

    Article  Google Scholar 

  7. Marques P, Martins R, Seabra J (2017) Analytical load sharing and mesh stiffness model for spur/helical and internal/external gears–Towards constant mesh stiffness gear design. Mech Mach Theory 113:126–140

    Article  Google Scholar 

  8. Kiekbusch T, Sappok D, Sauer B, Howard I (2011) Calculation of the combined torsional mesh stiffness of spur gears with two-and three-dimensional parametrical FE models. Strojniški vestnik-J Mech Eng 57(11):810–818

    Article  Google Scholar 

  9. Zhan J, Fard M, Jazar R (2017) A CAD-FEM-QSA integration technique for determining the time-varying meshing stiffness of gear pairs. Measurement 100:139–149

    Article  Google Scholar 

  10. Wang Y, Dou D, Shiyuan E, Jianjun W (2020) Comparison on torsional mesh stiffness and contact ratio of involute internal gear and high contact ratio internal gear. Proc Inst Mech Eng C-J Mech Eng Sci 234(7):1423–1437

    Article  Google Scholar 

  11. Chen K, Huangfu Y, Ma H, Xu Z, Li X, Wen B (2019) Calculation of mesh stiffness of spur gears considering complex foundation types and crack propagation paths. Mech Syst Signal Pr 130:273–292

    Article  Google Scholar 

  12. Huangfu Y, Chen K, Ma H, Li X, Han H, Zhao Z (2020) Meshing and dynamic characteristics analysis of spalled gear systems: A theoretical and experimental study. Mech Syst Signal Pr 139:106640

    Article  Google Scholar 

  13. Yang D, Lin J (1987) Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. J Mech Trans Autom Design 109(2):189–196

    Article  Google Scholar 

  14. Liang X, Zuo M, Patel T (2014) Evaluating the time-varying mesh stiffness of a planetary gear set using the potential energy method. Proc Inst Mech Eng C-J Mech Eng Sci 228(3):535–547

    Article  Google Scholar 

  15. Ma H, Song R, Pang X, Wen B (2014) Time-varying mesh stiffness calculation of cracked spur gears. Eng Fail Anal 44:179–194

    Article  Google Scholar 

  16. Ma H, Zeng J, Feng R, Pang X, Wen B (2016) An improved analytical method for mesh stiffness calculation of spur gears with tip relief. Mech Mach Theory 98:64–80

    Article  Google Scholar 

  17. Saxena A, Parey A, Chouksey M (2015) Effect of shaft misalignment and friction force on time varying mesh stiffness of spur gear pair. Eng Fail Anal 49:79–91

    Article  Google Scholar 

  18. Tang X, Zou L, Yang W, Huang Y, Wang H (2018) Novel mathematical modelling methods of comprehensive mesh stiffness for spur and helical gears. Appl Math Model 64:524–540

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu Z, Yu W, Shao Y (2021) A refined analytical model for the mesh stiffness calculation of plastic gear pairs. Appl Math Model 98:71–89

    Article  MathSciNet  MATH  Google Scholar 

  20. Wen Q, Chen Q, Du Q, Yang Y (2021) Time-varying mesh stiffness calculation for gear pairs with misalignment errors in multiple degrees of freedom based on an analytical method. Proc Inst Mech Eng C-J Mech Eng Sci 236(1):689–705

    Article  Google Scholar 

  21. Ma H, Pang X, Feng R, Song R, Wen B (2015) Fault features analysis of cracked gear considering the effects of the extended tooth contact. Eng Fail Anal 48:105–120

    Article  Google Scholar 

  22. Chen Z, Shao Y (2013) Mesh stiffness calculation of a spur gear pair with tooth profile modification and tooth root crack. Mech Mach Theory 62:63–74

    Article  Google Scholar 

  23. Zhang Y, Liu H, Zhu C, Song C (2017) Lubrication film stiffness of a spur gear pair. In: Proceedings of the international conference on power transmissions, London, pp 981–986

  24. Zhang Y, Liu H, Zhu C, Song C, Li Z (2018) Influence of lubrication starvation and surface waviness on the oil film stiffness of elastohydrodynamic lubrication line contact. J Vib Control 24(5):924–936

    Article  Google Scholar 

  25. Zhang Y, Liu H, Zhu C, Liu M, Song C (2016) Oil film stiffness and damping in an elastohydrodynamic lubrication line contact-vibration. J Mech Sci Technol 30(7):3031–3039

    Article  Google Scholar 

  26. Qin W, Chao J, Duan L (2015) Study on stiffness of elastohydrodynamic line contact. Mech Mach Theory 86:36–47

    Article  Google Scholar 

  27. Sun Y, Xiao H, Xu J, Yu W (2018) Study on the normal contact stiffness of the fractal rough surface in mixed lubrication. Proc Inst Mech Eng J-J Eng Tribol 232(12):1604–1617

    Article  Google Scholar 

  28. Zhao Z, Han H, Wang P, Ma H, Zhang S, Yang Y (2021) An improved model for meshing characteristics analysis of spur gears considering fractal surface contact and friction. Mech Mach Theory 158:104219

    Article  Google Scholar 

  29. Xiao H, Sun Y, Xu J (2018) Investigation into the normal contact stiffness of rough surface in line contact mixed elastohydrodynamic lubrication. Tribol Trans 61(4):742–753

    Article  Google Scholar 

  30. Xiao H, Gao J, Wu J (2022) Mesh stiffness model of a spur gear pair with surface roughness in mixed elastohydrodynamic lubrication. J Braz Soc Mech Sci 44(4):1–18

    Google Scholar 

  31. Xiao Z, Shi X (2019) Investigation on stiffness and damping of transient non-Newtonian thermal elastohydrodynamic point contact for crowned herringbone gears. Tribol Int 137:102–112

    Article  Google Scholar 

  32. Huang X, Yang B, Wang Y (2019) A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling. Appl Math Model 72:623–649

    Article  MathSciNet  MATH  Google Scholar 

  33. Li Z, Zhu C, Liu H, Gu Z (2020) Mesh stiffness and nonlinear dynamic response of a spur gear pair considering tribo-dynamic effect. Mech Mach Theory 153(3):103989

    Article  Google Scholar 

  34. Tsuha N, Cavalca KL (2020) Finite line contact stiffness under elastohydrodynamic lubrication considering linear and nonlinear force models. Tribol Int 146:106219

    Article  Google Scholar 

  35. Pei J, Han X, Tao Y (2020) An improved stiffness model for line contact elastohydrodynamic lubrication and its application in gear pairs. Ind Lubr Tribol 72(5):703–708

    Article  Google Scholar 

  36. Zhou C, Xiao Z (2018) Stiffness and damping models for the oil film in line contact elastohydrodynamic lubrication and applications in the gear drive. Appl Math Model 61:634–649

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang Z, Pu W, Pei X, Cao W (2021) Contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. Friction 10(4):545–559

    Article  Google Scholar 

  38. Cheng G, Xiao K, Wang J, Pu W, Han Y (2020) Calculation of gear meshing stiffness considering lubrication. ASME J Tribol 142(3):031602

    Article  Google Scholar 

  39. Chen Z, Ji P (2019) Time varying mesh stiffness calculation of spur gear pair under mixed elastohydrodynamic lubrication condition. In: Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)

  40. Luo Y, Baddour N, Liang M (2019) Dynamical modeling and experimental validation for tooth pitting and spalling in spur gears. Mech Syst Signal Pr 119:155–181

    Article  Google Scholar 

  41. Sainsot P, Velex P, Duverger O (2004) Contribution of gear body to tooth deflections—a new bidimensional analytical formula. ASME J Mech Des 126(4):748–752

    Article  Google Scholar 

  42. Masjedi M, Khonsari MM (2014) Mixed elastohydrodynamic lubrication line-contact formulas with different surface patterns. Proc Inst Mech Eng J-J Eng Tribol 228(8):849–859

    Article  Google Scholar 

  43. Hu B, Zhou C, Chen S (2019) Elastic dynamics modelling and analysis for a valve train including oil film stiffness and dry contact stiffness. Mech Mach Theory 131:33–47

    Article  Google Scholar 

  44. Masjedi M, Khonsari MM (2012) Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. ASME J Tribol 134(1):011503

    Article  Google Scholar 

  45. Zhao Y, Maietta DM, Chang L (1999) An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME J Tribol 122(1):86–93

    Article  Google Scholar 

  46. Raghuwanshi NK, Parey A (2017) Experimental measurement of spur gear mesh stiffness using digital image correlation technique. Measurement 111:93–104

    Article  Google Scholar 

  47. Chen Z, Shao Y (2011) Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng Fail Anal 18(8):2149–2164

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants Nos. 52005051 and 52075153), the Key Research and Development Program of Hunan Province (Grants No. 2020WK2032) and the Natural Science Foundation of Hunan Province (Grant No. 2021JJ40580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Ethics declarations

Conflict of interest

The authors state that there is no potential conflict in this article.

Additional information

Technical Editor: Zilda de Castro Silveira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Xing, M. & Hu, B. A mesh stiffness model with the asperity contact for spur gear in mixed elastohydrodynamic lubrication. J Braz. Soc. Mech. Sci. Eng. 44, 466 (2022). https://doi.org/10.1007/s40430-022-03748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03748-9

Keywords

Navigation