Skip to main content

Advertisement

Log in

A comprehensive review of latent heat energy storage for various applications: an alternate to store solar thermal energy

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

As the renewable energy culture grows, so does the demand for renewable energy production. The peak in demand is mainly due to the rise in fossil fuel prices and the harmful impact of fossil fuels on the environment. Among all renewable energy sources, solar energy is one of the cleanest, most abundant, and highest potential renewable energy sources. However, solar energy has some limitations, such as its intermittent nature and availability only on sunny days. Thus, the need for energy storage is realized and results in sensible and latent heat energy storage being used. Latent heat energy storage (LHES) offers high storage density and an isothermal condition for a low- to medium-temperature range compared to sensible heat storage. The work presented here provides a comprehensive review of the design, development, and application of latent heat energy storage. It is found that choosing a phase change material and its properties is the first stage of development. In the next phase, numerical and experimental investigations of performance estimation are reviewed. Further, performance enhancement techniques are found to be an effective practice to get better results. Finally, findings are categorized based on the application of LHES. The objective is to explore and present the potential of LHES to store solar heat. Thus, this review serves as the guidelines for the design and development of LHES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

D i :

Inner diameter (m)

D o :

Outer diameter (m)

h eff :

Effective convective heat transfer (W/m2 K)

k :

Thermal conductivity (W/m K)

z :

Position coordinate (m)

CLHS:

Composite latent heat storage

CSP:

Concentrating solar power

DSC:

Differential scanning calorimetry

EDX:

Energy-dispersive X-ray

FTIR:

Fourier transform infrared spectroscopy

HTF:

Heat transfer fluid

LHES:

Latent heat energy storage

LMTD:

Logarithmic mean temperature difference

MEPCM:

Micro encapsulated phase change material

OPCMs:

Organic phase change materials

PCC:

Phase change composite

PCM:

Phase change material

PDE:

Partial differential equation

PF:

Packing factor

PPI:

Pore numbers per Inch

PV:

Photovoltaic

SS316:

Stainless steel 316

TES:

Thermal energy storage

avg:

average

conv:

convection

f:

fluid

s:

solid

w:

wall

ε :

Porosity

λ :

Effective thermal conductivity of PCM (W/(m K))

ρ :

Density (kg/m3)

β :

Dimensionless time

References

  1. IEA (2019) World energy balances: an overview. J Chem Inf Model 53:1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  2. Muzzamal MB (2017) Energy efficient solar milk chiller. Int J Sci Technol Res 6:65–69

    Google Scholar 

  3. Tiwari AK, Sontake VC, Kalamkar VR (2020) Enhancing the performance of solar photovoltaic water pumping system by water cooling over and below the photovoltaic array. J Sol Energy Eng 142:1–9. https://doi.org/10.1115/1.4044978

    Article  Google Scholar 

  4. Stutz B, Le Pierres N, Kuznik F, Johannes K, Palomo Del Barrio E, Bédécarrats JP, Gibout S, Marty P, Zalewski L, Soto J, Mazet N, Olives R, Bezian JJ, Minh DP (2017) Stockage thermique de l’énergie solaire. Comptes Rendus Phys 18:401–414. https://doi.org/10.1016/j.crhy.2017.09.008

    Article  Google Scholar 

  5. Paul D, Ionescu C, Necula H (2017) Study of thermal energy storage using phase change materials, In: Proceedings of the 8th international conferences energy environment energy saved today is asset futur. CIEM 2017. pp 162–166. https://doi.org/10.1109/CIEM.2017.8120763.

  6. Mahdi MS, Mahood HB, Khadom AA, Campbell AN, Hasan M, Sharif AO (2019) Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications. Therm Sci Eng Prog 10:287–298. https://doi.org/10.1016/j.tsep.2019.02.010

    Article  Google Scholar 

  7. Magendran SS, Khan FSA, Mubarak NM, Vaka M, Walvekar R, Khalid M, Abdullah EC, Nizamuddin S, Karri RR (2019) Synthesis of organic phase change materials (PCM) for energy storage applications: a review. Nano-Struct Nano-Objects 20:100399. https://doi.org/10.1016/j.nanoso.2019.100399

    Article  Google Scholar 

  8. Ge H, Li H, Mei S, Liu J (2013) Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energy Rev 21:331–346. https://doi.org/10.1016/j.rser.2013.01.008

    Article  Google Scholar 

  9. Nallusamy N, Sampath S, Velraj R (2007) Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renew Energy 32:1206–1227. https://doi.org/10.1016/j.renene.2006.04.015

    Article  Google Scholar 

  10. Geethalakshmi D, Shriman B (2019) Baterry storage system for renewable energy integration. https://www.electricalindia.in/battery-energy-storage-system-for-renewable-energy-integration/

  11. Aljehani A, Razack SAK, Nitsche L, Al-Hallaj S (2018) Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite. Energy Convers Manag 169:404–418. https://doi.org/10.1016/j.enconman.2018.05.040

    Article  Google Scholar 

  12. Li B, Zhai X, Cheng X (2018) Experimental and numerical investigation of a solar collector/storage system with composite phase change materials. Sol Energy 164:65–76. https://doi.org/10.1016/j.solener.2018.02.031

    Article  Google Scholar 

  13. Sari A, Eroglu R, Biçer A, Karaipekli A (2011) Synthesis and thermal energy storage properties of erythritol tetrastearate and erythritol tetrapalmitate. Chem Eng Technol 34:87–92. https://doi.org/10.1002/ceat.201000306

    Article  Google Scholar 

  14. Bellan S, Gonzalez-Aguilar J, Romero M, Rahman MM, Goswami DY, Stefanakos EK, Couling D (2014) Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Appl Therm Eng 71:481–500. https://doi.org/10.1016/j.applthermaleng.2014.07.009

    Article  Google Scholar 

  15. Verma P, Varun SK (2008) Singal, review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew Sustain Energy Rev 12:999–1031. https://doi.org/10.1016/j.rser.2006.11.002

    Article  Google Scholar 

  16. Asgharian H, Baniasadi E (2019) A review on modeling and simulation of solar energy storage systems based on phase change materials. J Energy Storage. https://doi.org/10.1016/j.est.2018.11.025

    Article  Google Scholar 

  17. Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. https://doi.org/10.1016/j.apenergy.2012.11.051

    Article  Google Scholar 

  18. Soni V, Kumar A, Jain VK (2018) Modeling of PCM melting: Analysis of discrepancy between numerical and experimental results and energy storage performance. Energy 150:190–204. https://doi.org/10.1016/j.energy.2018.02.097

    Article  Google Scholar 

  19. Frank Gong F, Li H, Wang W, Huang J, David Xia D, Liao J, Wu M, Papavassiliou DV (2019) Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 58:322–330. https://doi.org/10.1016/j.nanoen.2019.01.044

    Article  Google Scholar 

  20. Shmueli H, Ziskind G, Letan R (2010) Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments. Int J Heat Mass Transf 53:4082–4091. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.028

    Article  MATH  Google Scholar 

  21. Bechiri M, Mansouri K (2015) Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system. Renew Energy. https://doi.org/10.1016/j.renene.2014.09.010

    Article  Google Scholar 

  22. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC (2015) Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag 95:193–228. https://doi.org/10.1016/j.enconman.2015.01.084

    Article  Google Scholar 

  23. Zhao L, Xing Y, Liu X (2020) Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material. Renew Energy 146:1578–1587. https://doi.org/10.1016/j.renene.2019.07.115

    Article  Google Scholar 

  24. Cao Y, Fan D, Lin S, Mu L, Ng FTT, Pan Q (2020) Phase change materials based on comb-like polynorbornenes and octadecylamine-functionalized graphene oxide nanosheets for thermal energy storage. Chem Eng J 389:124318. https://doi.org/10.1016/j.cej.2020.124318

    Article  Google Scholar 

  25. Dannemand M, Johansen JB, Furbo S (2016) Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Sol Energy Mater Sol Cells 145:287–295. https://doi.org/10.1016/j.solmat.2015.10.038

    Article  Google Scholar 

  26. Maleki M, Imani A, Ahmadi R, Emrooz HBM, Beitollahi A (2020) Low-cost carbon foam as a practical support for organic phase change materials in thermal management. Appl Energy 258:114108. https://doi.org/10.1016/j.apenergy.2019.114108

    Article  Google Scholar 

  27. Kumar A, Shukla SK (2015) A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 74:462–469. https://doi.org/10.1016/j.egypro.2015.07.728

    Article  Google Scholar 

  28. Aljehani A, Nitsche LC, Al-Hallaj S (2020) Numerical modeling of transient heat transfer in a phase change composite thermal energy storage (PCC-TES) system for air conditioning applications. Appl Therm Eng 164:114522. https://doi.org/10.1016/j.applthermaleng.2019.114522

    Article  Google Scholar 

  29. Mehta DS, Solanki K, Rathod MK, Banerjee J (2019) Thermal performance of shell and tube latent heat storage unit: comparative assessment of horizontal and vertical orientation. J Energy Storage 23:344–362. https://doi.org/10.1016/j.est.2019.03.007

    Article  Google Scholar 

  30. Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA (2018) Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng 130:1349–1362. https://doi.org/10.1016/j.applthermaleng.2017.11.130

    Article  Google Scholar 

  31. Erek A, Ilken Z, Acar MA (2005) Experimental and numerical investigation of thermal energy storage with a finned tube. Int J Energy Res 29:283–301. https://doi.org/10.1002/er.1057

    Article  Google Scholar 

  32. Agyenim F, Eames P, Smyth M (2010) Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew Energy 35:198–207. https://doi.org/10.1016/j.renene.2009.03.010

    Article  Google Scholar 

  33. Akgün M, Aydin O, Kaygusuz K (2008) Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng 28:405–413. https://doi.org/10.1016/j.applthermaleng.2007.05.013

    Article  Google Scholar 

  34. Adine HA, El Qarnia H (2009) Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model 33:2132–2144. https://doi.org/10.1016/j.apm.2008.05.016

    Article  Google Scholar 

  35. Tay NHS, Bruno F, Belusko M (2013) Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Appl Energy 104:79–86. https://doi.org/10.1016/j.apenergy.2012.10.040

    Article  Google Scholar 

  36. Raj AK, Srinivas M, Jayaraj S (2020) Transient CFD analysis of macro-encapsulated latent heat thermal energy storage containers incorporated within solar air heater. Int J Heat Mass Transf 156:119896. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119896

    Article  Google Scholar 

  37. Al-Abidi AA, Bin Mat S, Sopian K, Sulaiman MY, Mohammed AT (2013) CFD applications for latent heat thermal energy storage: a review. Renew Sustain Energy Rev 20:353–363. https://doi.org/10.1016/j.rser.2012.11.079

    Article  Google Scholar 

  38. Thomas DG, Sajith Babu C, Gopi S (2016) Performance analysis of a latent heat thermal energy storage system for solar energy applications. Proced Technol 24:469–476. https://doi.org/10.1016/j.protcy.2016.05.081

    Article  Google Scholar 

  39. Ismail KAR, Henríquez JR (2002) Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl Therm Eng 22:1705–1716. https://doi.org/10.1016/S1359-4311(02)00080-7

    Article  Google Scholar 

  40. Pomianowski M, Heiselberg P, Zhang Y (2013) Review of thermal energy storage technologies based on PCM application in buildings. Energy Build 67:56–69. https://doi.org/10.1016/j.enbuild.2013.08.006

    Article  Google Scholar 

  41. Soares N, Costa JJ, Gaspar AR, Santos P (2013) Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build 59:82–103. https://doi.org/10.1016/j.enbuild.2012.12.042

    Article  Google Scholar 

  42. Belmonte JF, Izquierdo-Barrientos MA, Molina AE, Almendros-Ibáñez JA (2016) Air-based solar systems for building heating with PCM fluidized bed energy storage. Energy Build 130:150–165. https://doi.org/10.1016/j.enbuild.2016.08.041

    Article  Google Scholar 

  43. Hasan A, McCormack SJ, Huang MJ, Norton B (2010) Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol Energy 84:1601–1612. https://doi.org/10.1016/j.solener.2010.06.010

    Article  Google Scholar 

  44. Whiffen TR, Riffat SB (2013) A review of PCM technology for thermal energy storage in the built environment: part I. Int J Low-Carbon Technol 8:147–158. https://doi.org/10.1093/ijlct/cts021

    Article  Google Scholar 

  45. Yusufoglu Y, Apaydin T, Yilmaz S, Paksoy HO (2015) Improving performance of household refrigerators by incorporating phase change materials. Int J Refrig. https://doi.org/10.1016/j.ijrefrig.2015.04.020

    Article  Google Scholar 

  46. Oró E, Miró L, Farid MM, Cabeza LF (2012) Improving thermal performance of freezers using phase change materials. Int J Refrig. https://doi.org/10.1016/j.ijrefrig.2012.01.004

    Article  Google Scholar 

  47. De Falco M, Dose G, Zaccagnini A (2015) PCM-cold storage system: an innovative technology for air conditioning energy saving. Chem Eng Trans 43:1981–1986. https://doi.org/10.3303/CET1543331

    Article  Google Scholar 

  48. Pereira da Cunha J, Eames P (2016) Thermal energy storage for low and medium temperature applications using phase change materials - a review. Appl Energy 177:227–238. https://doi.org/10.1016/j.apenergy.2016.05.097

    Article  Google Scholar 

  49. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  50. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer. https://doi.org/10.1007/978-3-540-68557-9

    Article  Google Scholar 

  51. Sarbu I, Sebarchievici C (2018) A comprehensive review of thermal energy storage. Sustainability 10(1):191. https://doi.org/10.3390/su10010191

    Article  Google Scholar 

  52. Riahi S, Jovet Y, Saman WY, Belusko M, Bruno F (2019) Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison. Sol Energy 180:104–115. https://doi.org/10.1016/j.solener.2018.12.072

    Article  Google Scholar 

  53. Cabeza LF, Svensson G, Hiebler S, Mehling H (2003) Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material. Appl Therm Eng 23:1697–1704. https://doi.org/10.1016/S1359-4311(03)00107-8

    Article  Google Scholar 

  54. Sahan N, Paksoy HO (2014) Thermal enhancement of paraffin as a phase change material with nanomagnetite. Sol Energy Mater Sol Cells 126:56–61. https://doi.org/10.1016/j.solmat.2014.03.018

    Article  Google Scholar 

  55. Chung O, Jeong SG, Yu S, Kim S (2014) Thermal performance of organic PCMs/micronized silica composite for latent heat thermal energy storage. Energy Build 70:180–185. https://doi.org/10.1016/j.enbuild.2013.11.055

    Article  Google Scholar 

  56. Behzadi S, Farid MM (2014) Long term thermal stability of organic PCMs. Appl Energy 122:11–16. https://doi.org/10.1016/j.apenergy.2014.01.032

    Article  Google Scholar 

  57. Maleki M, Imani A, Ahmadi R, Emrooz HBM, Beitollahi A (2020) Low-cost carbon foam as a practical support for organic phase change materials in thermal management. Appl Energy 258:114108. https://doi.org/10.1016/j.apenergy.2019.114108

    Article  Google Scholar 

  58. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2003.09.015

    Article  Google Scholar 

  59. Cheng T, Wang N, Wang H, Sun R, Wong CP (2020) A newly designed paraffin@VO2 phase change material with the combination of high latent heat and large thermal conductivity. J Colloid Interface Sci 559:226–235. https://doi.org/10.1016/j.jcis.2019.10.033

    Article  Google Scholar 

  60. Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158. https://doi.org/10.1016/j.enconman.2016.02.045

    Article  Google Scholar 

  61. Shen C, Li X, Yang G, Wang Y, Zhao L, Mao Z, Wang B, Feng X, Sui X (2020) Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management. Chem Eng J 385:123958. https://doi.org/10.1016/j.cej.2019.123958

    Article  Google Scholar 

  62. Lorsch HG, Kauffman KW, Denton JC (1975) Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15:1–8. https://doi.org/10.1016/0013-7480(75)90002-9

    Article  Google Scholar 

  63. Kenisarin M, Mahkamov K, Kahwash F, Makhkamova I (2019) Enhancing thermal conductivity of paraffin wax 53–57 °C using expanded graphite. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2019.110026

    Article  Google Scholar 

  64. Lázaro A, Zalba B, Bobi M, Castellón C, Cabeza LF (2006) Experimental study on phase change materials and plastics compatibility. AIChE J 52:804–808. https://doi.org/10.1002/aic.10643

    Article  Google Scholar 

  65. Leong KY, Chew SP, Gurunathan BA, Ku Ahmad KZ, Ong HC (2019) An experimental approach to investigate thermal performance of paraffin wax and 1-hexadecanol based heat sinks for cooling of electronic system. Int Commun Heat Mass Transf 109:104365. https://doi.org/10.1016/j.icheatmasstransfer.2019.104365

    Article  Google Scholar 

  66. Alkan C, Sari A (2008) Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82:118–124. https://doi.org/10.1016/j.solener.2007.07.001

    Article  Google Scholar 

  67. Kant K, Shukla A, Sharma A (2016) Performance evaluation of fatty acids as phase change material for thermal energy storage. J Energy Storage. https://doi.org/10.1016/j.est.2016.04.002

    Article  Google Scholar 

  68. Kant K, Shukla A, Sharma A, Kumar A, Jain A (2016) Thermal energy storage based solar drying systems: a review. Innov Food Sci Emerg Technol 34:86–99. https://doi.org/10.1016/j.ifset.2016.01.007

    Article  Google Scholar 

  69. Al-Hamadani AAF, Shukla SK (2012) Water distillation using solar energy system with Lauric acid as storage medium. Int J Energy Eng 1:1–8. https://doi.org/10.5923/j.ijee.20110101.01

    Article  Google Scholar 

  70. Veerakumar C, Sreekumar A (2020) Thermo-physical investigation and experimental discharge characteristics of lauryl alcohol as a potential phase change material for thermal management in buildings. Renew Energy 148:492–503. https://doi.org/10.1016/j.renene.2019.10.055

    Article  Google Scholar 

  71. Weingrill HM, Resch-Fauster K, Zauner C (2018) Applicability of polymeric materials as phase change materials. Macromol Mater Eng 303:1–17. https://doi.org/10.1002/mame.201800355

    Article  Google Scholar 

  72. Chalkia V, Tachos N, Pandis PK, Giannakas A, Koukou MK, Vrachopoulos MG, Coelho L, Ladavos A, Stathopoulos VN (2018) Influence of organic phase change materials on the physical and mechanical properties of HDPE and PP polymers. RSC Adv 8:27438–27447. https://doi.org/10.1039/c8ra03839b

    Article  Google Scholar 

  73. Li C, Zhao X, Zhang B, Xie B, He Z, Chen J, He J (2020) Stearic acid/copper foam as composite phase change materials for thermal energy storage. J Therm Sci 29:492–502. https://doi.org/10.1007/s11630-020-1272-8

    Article  Google Scholar 

  74. Lin Y, Alva G, Fang G (2018) Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 165:685–708. https://doi.org/10.1016/j.energy.2018.09.128

    Article  Google Scholar 

  75. Zhao BC, Wang RZ (2019) Perspectives for short-term thermal energy storage using salt hydrates for building heating. Energy 189:116139. https://doi.org/10.1016/j.energy.2019.116139

    Article  Google Scholar 

  76. Kumar N, Hirschey J, LaClair TJ, Gluesenkamp KR, Graham S (2019) Review of stability and thermal conductivity enhancements for salt hydrates. J Energy Storage. https://doi.org/10.1016/j.est.2019.100794

    Article  Google Scholar 

  77. Ushak S, Vega M, Lovera-Copa JA, Pablo S, Lujan M, Grageda M (2020) Thermodynamic modeling and experimental verification of new eutectic salt mixtures as thermal energy storage materials. Sol Energy Mater Sol Cells 209:110475. https://doi.org/10.1016/j.solmat.2020.110475

    Article  Google Scholar 

  78. Feilchenfeld H, Sarig S (1985) Calcium chloride hexahydrate: a phase-changing material for energy storage. Ind Eng Chem Prod Res Dev 24:130–133. https://doi.org/10.1021/i300017a024

    Article  Google Scholar 

  79. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015

    Article  Google Scholar 

  80. Wang Q, Wang J, Chen Y, Zhao CY (2019) Experimental investigation of barium hydroxide octahydrate as latent heat storage materials. Sol Energy 177:99–107. https://doi.org/10.1016/j.solener.2018.11.013

    Article  Google Scholar 

  81. Kumar N, Hirschey J, LaClair TJ, Gluesenkamp KR, Graham S (2019) Review of stability and thermal conductivity enhancements for salt hydrates. J Energy Storage 24:100794. https://doi.org/10.1016/j.est.2019.100794

    Article  Google Scholar 

  82. Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M (2015) Supercooling elimination of phase change materials (PCMs) microcapsules. Energy 87:654–662. https://doi.org/10.1016/j.energy.2015.05.033

    Article  Google Scholar 

  83. Li X, Zhou Y, Nian H, Zhang X, Dong O, Ren X, Zeng J, Hai C, Shen Y (2017) Advanced nanocomposite phase change material based on calcium chloride hexahydrate with aluminum oxide nanoparticles for thermal energy storage. Energy Fuels 31:6560–6567. https://doi.org/10.1021/acs.energyfuels.7b00851

    Article  Google Scholar 

  84. Winfred Rufuss DD, Iniyan S, Suganthi L, Pa D (2017) Nanoparticles enhanced phase change material (NPCM) as heat storage in solar still application for productivity enhancement. Energy Proced 141:45–49. https://doi.org/10.1016/j.egypro.2017.11.009

    Article  Google Scholar 

  85. Malan DJ, Dobson RT, Dinter F (2015) Solar thermal energy storage in power generation using phase change material with heat pipes and fins to enhance heat transfer. Energy Procedia 69:925–936. https://doi.org/10.1016/j.egypro.2015.03.176

    Article  Google Scholar 

  86. Nithyanandam K, Pitchumani R, Mathur A (2014) Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power. Appl Energy 113:1446–1460. https://doi.org/10.1016/j.apenergy.2013.08.053

    Article  Google Scholar 

  87. Ettouney H, Alatiqi I, Al-Sahali M, Al-Hajirie K (2006) Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads. Energy Convers Manag 47:211–228. https://doi.org/10.1016/j.enconman.2005.04.003

    Article  Google Scholar 

  88. Zhou S, Zhou Y, Ling Z, Zhang Z, Fang X (2018) Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs. Appl Therm Eng 133:446–451. https://doi.org/10.1016/j.applthermaleng.2018.01.067

    Article  Google Scholar 

  89. Gonzalez-Nino D, Boteler LM, Ibitayo D, Jankowski NR, Urciuoli D, Kierzewski IM, Quintero PO (2018) Experimental evaluation of metallic phase change materials for thermal transient mitigation. Int J Heat Mass Transf 116:512–519. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.039

    Article  Google Scholar 

  90. Kotzé JP, Von Backström TW, Erens PJ (2014) Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material. Energy Proced 49:860–869. https://doi.org/10.1016/j.egypro.2014.03.093

    Article  Google Scholar 

  91. Shamberger PJ, Bruno NM (2020) Review of metallic phase change materials for high heat flux transient thermal management applications. Appl Energy 258:113955. https://doi.org/10.1016/j.apenergy.2019.113955

    Article  Google Scholar 

  92. Sakai H, Sheng N, Kurniawan A, Akiyama T, Nomura T (2020) Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications. Appl Energy 265:114673. https://doi.org/10.1016/j.apenergy.2020.114673

    Article  Google Scholar 

  93. Yang XH, Tan SC, He ZZ, Zhou YX, Liu J (2017) Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Appl Therm Eng 119:34–41. https://doi.org/10.1016/j.applthermaleng.2017.03.050

    Article  Google Scholar 

  94. Fukahori R, Nomura T, Zhu C, Sheng N, Okinaka N, Akiyama T (2016) Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Appl Energy 170:324–328. https://doi.org/10.1016/j.apenergy.2016.02.106

    Article  Google Scholar 

  95. Risueño E, Faik A, Rodríguez-Aseguinolaza J, Blanco-Rodríguez P, Gil A, Tello M, D’Aguanno B (2015) Mg–Zn–Al eutectic alloys as phase change material for latent heat thermal energy storage. Energy Procedia 69:1006–1013. https://doi.org/10.1016/j.egypro.2015.03.193

    Article  Google Scholar 

  96. Dhivya S, Hussain SI, Kalaiselvam S (2020) Novel metal coated nanocapsules of ethyl esters fatty acid eutectic mixture as phase change material with enhanced thermal conductivity for energy storage applications. Thermochim Acta 687:178581. https://doi.org/10.1016/j.tca.2020.178581

    Article  Google Scholar 

  97. Liston LC, Farnam Y, Krafcik M, Weiss J, Erk K, Tao BY (2016) Binary mixtures of fatty acid methyl esters as phase change materials for low temperature applications. Appl Therm Eng 96:501–507. https://doi.org/10.1016/j.applthermaleng.2015.11.007

    Article  Google Scholar 

  98. Mahdi MS, Hasan AF, Mahood HB, Campbell AN, Khadom AA, Karim AMA, Sharif AO (2019) Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit. J Energy Storage 23:456–468. https://doi.org/10.1016/j.est.2019.04.013

    Article  Google Scholar 

  99. Al-Mudhafar AHN, Nowakowski AF, Nicolleau FCGA (2020) Performance enhancement of PCM latent heat thermal energy storage system utilizing a modified webbed tube heat exchanger. Energy Rep 6:76–85. https://doi.org/10.1016/j.egyr.2020.02.030

    Article  Google Scholar 

  100. Karami R, Kamkari B (2020) Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems. Energy Convers Manag 210:112679. https://doi.org/10.1016/j.enconman.2020.112679

    Article  Google Scholar 

  101. Gürel B (2020) A numerical investigation of the melting heat transfer characteristics of phase change materials in different plate heat exchanger (latent heat thermal energy storage) systems. Int J Heat Mass Transf 148:119117. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119117

    Article  Google Scholar 

  102. Saedi Ardahaie S, Hosseini MJ, Ranjbar AA, Rahimi M (2019) Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger. Appl Therm Eng 159:113900. https://doi.org/10.1016/j.applthermaleng.2019.113900

    Article  Google Scholar 

  103. Mahdi JM, Lohrasbi S, Nsofor EC (2019) Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review. Int J Heat Mass Transf 137:630–649. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.111

    Article  Google Scholar 

  104. Fornarelli F, Camporeale SM, Fortunato B, Torresi M, Oresta P, Magliocchetti L, Miliozzi A, Santo G (2016) CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl Energy 164:711–722. https://doi.org/10.1016/j.apenergy.2015.11.106

    Article  Google Scholar 

  105. Abdelsalam MY, Teamah HM, Lightstone MF, Cotton JS (2020) Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: direct versus indirect heat exchange systems, Renew Energy 147:77–88. https://doi.org/10.1016/j.renene.2019.08.121

  106. Koizumi H, Jin Y (2012) Performance enhancement of a latent heat thermal energy storage system using curved-slab containers. Appl Therm Eng 37:145–153. https://doi.org/10.1016/j.applthermaleng.2011.11.009

    Article  Google Scholar 

  107. Mostafavi Tehrani SS, Shoraka Y, Diarce G, Taylor RA (2019) An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems. Renew Energy 132:694–708. https://doi.org/10.1016/j.renene.2018.08.038

    Article  Google Scholar 

  108. Wang S, Faghri A, Bergman TL (2010) A comprehensive numerical model for melting with natural convection. Int J Heat Mass Transf 53:1986–2000. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.057

    Article  MATH  Google Scholar 

  109. Lakhani S, Raul A, Saha SK (2017) Dynamic modelling of ORC-based solar thermal power plant integrated with multitube shell and tube latent heat thermal storage system. Appl Therm Eng 123:458–470. https://doi.org/10.1016/j.applthermaleng.2017.05.115

    Article  Google Scholar 

  110. Darzi AAR, Moosania SM, Tan FL, Farhadi M (2013) Numerical investigation of free-cooling system using plate type PCM storage. Int Commun Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.025

    Article  Google Scholar 

  111. Fan Z, Infante Ferreira CA, Mosaffa AH (2014) Numerical modelling of high temperature latent heat thermal storage for solar application combining with double-effect H2O/LiBr absorption refrigeration system. Sol Energy 110:398–409. https://doi.org/10.1016/j.solener.2014.09.036

    Article  Google Scholar 

  112. Gallego AJ, Ruíz-Pardo A, Cerezuela-Parish A, Sánchez J, Martín-Macareno C, Cabeza LF, Camacho EF, Oró E (2013) Mathematical modeling of a PCM storage tank in a solar cooling plant. Sol Energy 93:1–10. https://doi.org/10.1016/j.solener.2013.03.026

    Article  Google Scholar 

  113. Yang J, Zhao CY (2013) Solidification analysis of a single particle with encapsulated phase change materials. Appl Therm Eng 51:338–346. https://doi.org/10.1016/j.applthermaleng.2012.09.020

    Article  Google Scholar 

  114. Khodadadi JM, Zhang Y (2001) Effects of buoyancy-driven convection on melting within spherical containers. Int J Heat Mass Transf 44:1605–1618. https://doi.org/10.1016/S0017-9310(00)00192-7

    Article  MATH  Google Scholar 

  115. Galione PA, Lehmkuhl O, Rigola J, Oliva A (2015) Fixed-grid numerical modeling of melting and solidification using variable thermo-physical properties - application to the melting of n-Octadecane inside a spherical capsule. Int J Heat Mass Transf 86:721–743. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.033

    Article  Google Scholar 

  116. Shokouhmand H, Kamkari B (2012) Numerical simulation of phase change thermal storage in finned double-pipe heat exchanger. Appl Mech Mater 232:742–746. https://doi.org/10.4028/www.scientific.net/AMM.232.742

    Article  Google Scholar 

  117. Felix Regin A, Solanki SC, Saini JS (2009) An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew Energy 34:1765–1773. https://doi.org/10.1016/j.renene.2008.12.012

    Article  Google Scholar 

  118. Khalifa A, Tan L, Mahony D, Date A, Akbarzadeh A (2016) Numerical analysis of latent heat thermal energy storage using miniature heat pipes: a potential thermal enhancement for CSP plant development. Appl Therm Eng 108:93–103. https://doi.org/10.1016/j.applthermaleng.2016.07.111

    Article  Google Scholar 

  119. Seddegh S, Wang X, Henderson AD (2015) Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system. Appl Therm Eng 87:698–706. https://doi.org/10.1016/j.applthermaleng.2015.05.067

    Article  Google Scholar 

  120. Joulin A, Younsi Z, Zalewski L, Lassue S, Rousse DR, Cavrot JP (2011) Experimental and numerical investigation of a phase change material: thermal-energy storage and release. Appl Energy 88:2454–2462. https://doi.org/10.1016/j.apenergy.2011.01.036

    Article  Google Scholar 

  121. Saman W, Bruno F, Halawa E (2005) Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy 78:341–349. https://doi.org/10.1016/j.solener.2004.08.017

    Article  Google Scholar 

  122. Castell A, Belusko M, Bruno F, Cabeza LF (2011) Maximisation of heat transfer in a coil in tank PCM cold storage system. Appl Energy 88:4120–4127. https://doi.org/10.1016/j.apenergy.2011.03.046

    Article  Google Scholar 

  123. Mazhar AR, Liu S, Shukla A (2020) Experimental study on the thermal performance of a grey water heat harnessing exchanger using Phase Change Materials. Renew Energy 146:1805–1817. https://doi.org/10.1016/j.renene.2019.08.053

    Article  Google Scholar 

  124. Lee D, Kang C (2019) A study on development of the thermal storage type plate heat exchanger including PCM layer. J Mech Sci Technol 33:6085–6093. https://doi.org/10.1007/s12206-019-1152-x

    Article  Google Scholar 

  125. Bie Y, Li M, Malekian R, Chen F, Feng Z, Li Z (2018) Effect of phase transition temperature and thermal conductivity on the performance of Latent Heat Storage System. Appl Therm Eng 135:218–227. https://doi.org/10.1016/j.applthermaleng.2018.02.036

    Article  Google Scholar 

  126. Nie B, She X, Zou B, Li Y, Li Y, Ding Y (2020) Discharging performance enhancement of a phase change material based thermal energy storage device for transport air-conditioning applications. Appl Therm Eng 165:114582. https://doi.org/10.1016/j.applthermaleng.2019.114582

    Article  Google Scholar 

  127. Lazaro A, Dolado P, Marín JM, Zalba B (2009) PCM-air heat exchangers for free-cooling applications in buildings: experimental results of two real-scale prototypes. Energy Convers Manag 50:439–443. https://doi.org/10.1016/j.enconman.2008.11.002

    Article  Google Scholar 

  128. Stritih U (2004) An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.001

    Article  Google Scholar 

  129. Marín JM, Zalba B, Cabeza LF, Mehling H (2005) Improvement of a thermal energy storage using plates with paraffin-graphite composite. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.027

    Article  Google Scholar 

  130. Reddy RM, Nallusamy N, Reddy KH (2014) The effect of PCM capsule material on the thermal energy storage system performance. ISRN Renew Energy 2014:1–6. https://doi.org/10.1155/2014/529280

    Article  Google Scholar 

  131. Fadl M, Eames PC (2019) An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications. Energy 188:116083. https://doi.org/10.1016/j.energy.2019.116083

    Article  Google Scholar 

  132. Huang H, Xiao Y, Lin J, Zhou T, Liu Y, Zhao Q (2020) Improvement of the efficiency of solar thermal energy storage systems by cascading a PCM unit with a water tank. J Clean Prod 245:118864. https://doi.org/10.1016/j.jclepro.2019.118864

    Article  Google Scholar 

  133. Tang SZ, He Y, He YL, Wang FL (2020) Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas. Appl Energy 266:114870. https://doi.org/10.1016/j.apenergy.2020.114870

    Article  Google Scholar 

  134. Kabbara M, Groulx D, Joseph A (2018) A parametric experimental investigation of the heat transfer in a coil-in-tank latent heat energy storage system. Int J Therm Sci 130:395–405. https://doi.org/10.1016/j.ijthermalsci.2018.05.006

    Article  Google Scholar 

  135. Lohse E, Schmitz G (2012) Performance assessment of regularly structured Composite Latent Heat Storages for temporary cooling of electronic components. Int J Refrig 35:1145–1155. https://doi.org/10.1016/j.ijrefrig.2011.12.011

    Article  Google Scholar 

  136. Aydin D, Utlu Z, Kincay O (2015) Thermal performance analysis of a solar energy sourced latent heat storage. Renew Sustain Energy Rev 50:1213–1225. https://doi.org/10.1016/j.rser.2015.04.195

    Article  Google Scholar 

  137. Marušić A, Lončar D (2020) Experimental validation of high-temperature latent heat storage model using melting front propagation data. Appl Therm Eng 164:114520. https://doi.org/10.1016/j.applthermaleng.2019.114520

    Article  Google Scholar 

  138. Qiu F, Song S, Li D, Liu Y, Wang Y, Dong L (2019) Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.118952

    Article  Google Scholar 

  139. Zhang C, Li J, Chen Y (2019) Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Appl Energy 259:114102. https://doi.org/10.1016/j.apenergy.2019.114102

    Article  Google Scholar 

  140. Sheikholeslami M, Lohrasbi S, Ganji DD (2016) Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method. Appl Therm Eng 107:154–166. https://doi.org/10.1016/j.applthermaleng.2016.06.158

    Article  Google Scholar 

  141. Senthil R, Patel A, Rao R, Ganeriwal S (2020) Melting behavior of phase change material in a solar vertical thermal energy storage with variable length fins added on the heat transfer tube surfaces. Int J Renew Energy Dev 9:361–367. https://doi.org/10.14710/ijred.2020.29879

    Article  Google Scholar 

  142. Korth T, Loistl F, Storch A, Schex R, Krönauer A, Schweigler C (2020) Capacity enhancement of air conditioning systems by direct integration of a latent heat storage unit. Appl Therm Eng 167:114727. https://doi.org/10.1016/j.applthermaleng.2019.114727

    Article  Google Scholar 

  143. Tian Y, Zhao M (2019) Numerical simulation on the thermal performance enhancement of energy storage tank with phase change materials. J Therm Sci Technol 14:1–15. https://doi.org/10.1299/jtst.2019jtst0023

    Article  Google Scholar 

  144. Frederick RL (2019) Heat transfer enhancement in a cubical enclosure with hot and cold sectors in two opposite vertical walls. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2019.106035

    Article  Google Scholar 

  145. Rathod MK, Banerjee J (2015) Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Appl Therm Eng 75:1084–1092. https://doi.org/10.1016/j.applthermaleng.2014.10.074

    Article  Google Scholar 

  146. Raul A, Jain M, Gaikwad S, Saha SK (2018) Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications. Appl Therm Eng 143:415–428. https://doi.org/10.1016/j.applthermaleng.2018.07.123

    Article  Google Scholar 

  147. Sheng N, Rao Z, Zhu C, Habazaki H (2020) Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds. Solar Energy Mater Solar Cells 205:110241. https://doi.org/10.1016/j.solmat.2019.110241

    Article  Google Scholar 

  148. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles - paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278. https://doi.org/10.1016/j.solener.2016.03.004

    Article  Google Scholar 

  149. Shin D, Banerjee D (2015) Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. Int J Heat Mass Transf 84:898–902. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.100

    Article  Google Scholar 

  150. Ziaei S, Lorente S, Bejan A (2015) Morphing tree structures for latent thermal energy storage. J Appl Phys 117(22):224901. https://doi.org/10.1063/1.4921442

    Article  Google Scholar 

  151. Watanabe T, Kikuchi H, Kanzawa A (1993) Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures. Heat Recover Syst CHP 13:57–66. https://doi.org/10.1016/0890-4332(93)90025-Q

    Article  Google Scholar 

  152. Zhong JQ, Fragoso AT, Wells AJ, Wettlaufer JS (2012) Finite-sample-size effects on convection in mushy layers. J Fluid Mech 704:89–108

    Article  Google Scholar 

  153. Cui Y, Xie J, Liu J, Pan S (2015) Review of phase change materials integrated in building walls for energy saving. Proced Eng 121:763–770. https://doi.org/10.1016/j.proeng.2015.09.027

    Article  Google Scholar 

  154. Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15:1675–1695. https://doi.org/10.1016/j.rser.2010.11.018

    Article  Google Scholar 

  155. Hamada Y, Fukai J (2005) Latent heat thermal energy storage tanks for space heating of buildings: comparison between calculations and experiments. Energy Convers Manag 46:3221–3235. https://doi.org/10.1016/j.enconman.2005.03.009

    Article  Google Scholar 

  156. Oliver A (2012) Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build 48:1–7. https://doi.org/10.1016/j.enbuild.2012.01.026

    Article  Google Scholar 

  157. Takeda S, Nagano K, Mochida T, Shimakura K (2004) Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Sol Energy 77:329–338. https://doi.org/10.1016/j.solener.2004.04.014

    Article  Google Scholar 

  158. Li XY, Yang L, Wang XL, Miao XY, Yao Y, Qiang QQ (2018) Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems. Energy 150:591–600. https://doi.org/10.1016/j.energy.2018.02.107

    Article  Google Scholar 

  159. Infante Ferreira C, Kim DS (2014) Techno-economic review of solar cooling technologies based on location-specific data. Int J Refrig 39:23–37. https://doi.org/10.1016/j.ijrefrig.2013.09.033

    Article  Google Scholar 

  160. Talukdar S, Afroz HMM, Hossain MA, Aziz MA, Hossain MM (2019) Heat transfer enhancement of charging and discharging of phase change materials and size optimization of a latent thermal energy storage system for solar cold storage application. J Energy Storage 24:100797. https://doi.org/10.1016/j.est.2019.100797

    Article  Google Scholar 

  161. Liu M, Saman W, Bruno F (2014) Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit. Appl Energy 132:226–235. https://doi.org/10.1016/j.apenergy.2014.06.066

    Article  Google Scholar 

  162. Liu M, Saman W, Bruno F (2012) Development of a novel refrigeration system for refrigerated trucks incorporating phase change material. Appl Energy 92:336–342. https://doi.org/10.1016/j.apenergy.2011.10.015

    Article  Google Scholar 

  163. Azzouz K, Leducq D, Gobin D (2008) Performance enhancement of a household refrigerator by addition of latent heat storage. Int J Refrig 31:892–901. https://doi.org/10.1016/j.ijrefrig.2007.09.007

    Article  Google Scholar 

  164. Mao Q, Zhang L, Wu H, Liu X (2015) Design and calculation of a new storage tank for concentrating solar power plant. Energy Convers Manag 100:414–418. https://doi.org/10.1016/j.enconman.2015.05.022

    Article  Google Scholar 

  165. Tehrani SSM, Taylor RA, Saberi P, Diarce G (2016) Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants. Renew Energy 96:120–136. https://doi.org/10.1016/j.renene.2016.04.036

    Article  Google Scholar 

  166. Shabgard H, Bergman TL, Faghri A (2013) Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar day. Energy 60:474–484. https://doi.org/10.1016/j.energy.2013.08.020

    Article  Google Scholar 

  167. Seitz M, Johnson M, Hübner S (2017) Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs. Energy Convers Manag 143:286–294. https://doi.org/10.1016/j.enconman.2017.03.084

    Article  Google Scholar 

  168. Hübner S, Eck M, Stiller C, Seitz M (2016) Techno-economic heat transfer optimization of large scale latent heat energy storage systems in solar thermal power plants. Appl Therm Eng 98:483–491. https://doi.org/10.1016/j.applthermaleng.2015.11.026

    Article  Google Scholar 

  169. Johnson M, Vogel J, Hempel M, Dengel A, Seitz M, Hachmann B (2015) High temperature latent heat thermal energy storage integration in a co-gen plant. Energy Proced 73:281–288. https://doi.org/10.1016/j.egypro.2015.07.689

    Article  Google Scholar 

  170. Kim T, France DM, Yu W, Zhao W, Singh D (2014) Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power. Sol Energy 103:438–447. https://doi.org/10.1016/j.solener.2014.02.038

    Article  Google Scholar 

  171. Robak CW, Bergman TL, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473. https://doi.org/10.1016/j.solener.2011.07.006

    Article  Google Scholar 

  172. Cárdenas B, León N (2014) Latent heat based high temperature solar thermal energy storage for power generation. Energy Proced 57:580–589. https://doi.org/10.1016/j.egypro.2014.10.212

    Article  Google Scholar 

  173. Naghavi MS, Ong KS, Badruddin IA, Mehrali M, Metselaar HSC (2017) Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy 127:101–115. https://doi.org/10.1016/j.energy.2017.03.097

    Article  Google Scholar 

  174. Shabgard H, Song L, Zhu W (2018) Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage. Energy Convers Manag 175:121–131. https://doi.org/10.1016/j.enconman.2018.08.105

    Article  Google Scholar 

  175. Qu S, Ma F, Ji R, Wang D, Yang L (2015) System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage. Energy Build 105:294–301. https://doi.org/10.1016/j.enbuild.2015.07.040

    Article  Google Scholar 

  176. Johar DK, Sharma D, Soni SL, Gupta PK, Goyal R (2016) Experimental investigation on latent heat thermal energy storage system for stationary C.I. engine exhaust. Appl Therm Eng 104:64–73. https://doi.org/10.1016/j.applthermaleng.2016.05.060

    Article  Google Scholar 

  177. Campos-Celador Á, Diarce G, Zubiaga JT, Bandos TV, García-Romero AM, López LM, Sala JM (2014) Design of a finned plate latent heat thermal energy storage system for domestic applications. Energy Procedia 48:300–308. https://doi.org/10.1016/j.egypro.2014.02.035

    Article  Google Scholar 

  178. Trelles JP, Dufly JJ (2003) Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling. Appl Therm Eng 23:1647–1664. https://doi.org/10.1016/S1359-4311(03)00108-X

    Article  Google Scholar 

  179. Merlin K, Soto J, Delaunay D, Traonvouez L (2016) Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl Energy 183:491–503. https://doi.org/10.1016/j.apenergy.2016.09.007

    Article  Google Scholar 

  180. Khouya A, Draoui A (2019) Computational drying model for solar kiln with latent heat energy storage: case studies of thermal application. Renew Energy 130:796–813. https://doi.org/10.1016/j.renene.2018.06.090

    Article  Google Scholar 

  181. Xu H, Romagnoli A, Sze JY, Py X (2017) Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery. Appl Energy 187:281–290. https://doi.org/10.1016/j.apenergy.2016.11.070

    Article  Google Scholar 

  182. Zauner C, Hofmann R, Windholz B (2018) Increasing energy efficiency in pulp and paper production by employing a new type of latent heat storage, Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-64235-6.50238-2

  183. Tan L, Date A, Fernandes G, Singh B, Ganguly S (2017) Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Proced 110:83–88. https://doi.org/10.1016/j.egypro.2017.03.110

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the Mechanical department of Visvesvaraya National Institute of Technology, Nagpur, for providing us with an opportunity to conduct research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilas R. Kalamkar.

Additional information

Technical editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, D., Tiwari, A.K. & Kalamkar, V.R. A comprehensive review of latent heat energy storage for various applications: an alternate to store solar thermal energy. J Braz. Soc. Mech. Sci. Eng. 44, 446 (2022). https://doi.org/10.1007/s40430-022-03740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03740-3

Keywords

Navigation