Skip to main content
Log in

Metamodeling-assisted probabilistic first ply failure analysis of laminated composite plates—RS-HDMR- and GPR-based approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In structural applications, laminated composites are typically the best choice for providing a high strength-to-weight ratio. The composite laminates, on the other hand, are susceptible to the first ply failure (FPF), which can result in delamination, matrix cracking, and fiber breaking. As a result, it is critical to map the FPF of laminated composites against the uncertainty in material properties. In this paper, we presented a framework based on coupled statistical modeling and failure criteria to perform sensitivity analysis corresponding to the FPF of laminated composites. The practically relevant randomness in material properties (elastic modulus, shear modulus, Poisson’s ratio, and mass density) is enforced by utilizing the Monte Carlo random sampling method. The FPF of a laminated composite subjected to random material properties is evaluated using five failure criteria: maximum strain, maximum stress, Tsai-Hill, Tsai-Wu, and Hoffman. Such a random sampling-based dataset is used to train and validate the random sampling high dimensional model representation (RS-HDMR) metamodel and Gaussian process regression (GPR) model. To ensure sound generalization capabilities, the models are rigorously cross-validated. With sufficient confidence in the constructed models, the models are further utilized to perform the variance-based sensitivity analysis. It is worth mentioning that observations from both models in terms of parameters with the highest sensitivity (for the first-order polynomial function) are comparable. The RS-HDMR metamodel is further used to perform the second-order polynomial function-based sensitivity analysis, wherein the sensitivity index for the most sensitive parameter is observed to be very low when compared with the observations of first-order polynomial function-based sensitivity analysis. The numerically quantifiable outcomes of the present study will serve its purpose in the bottom-up design of the laminated composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

Abbreviations

\(\Pi\) :

Total potential energy

\(U\) :

Total strain energy

\(V\) :

Total work potential due to external forces

\(d\phi\) :

Incremental displacement

\(q_{z}\) :

Load intensity (transverse) of laminate

\(\sigma\) :

Stress component

\(\varepsilon\) :

Strain vector

\(\delta_{x}, \delta_{y}, \delta_{z}\) :

Displacement terms

\( \theta _{x} \;\text{and}\;\theta _{y} \) :

Rotational components at matrix level

\( \phi _{x} \;\text{and}\;\phi _{y} \) :

Rotational components at the nodal level

\(k_{x}, k_{y} \,\text{and}\, k_{xy}\) :

The curvature of the reference plane

\(\tilde{D}\) :

Displacement resultant

\(\tilde{M}\) :

Moment resultant

\(\tilde{T}\) :

Transverse shear resultant

[A], [B] and [D]:

Extensional, flexural extensional, and flexural stiffness matrix

\(\psi_{j}^{e}\) :

Shape function

u :

Displacement

\( \varepsilon _{x}^{0} ,\varepsilon _{x}^{0} \;\text{and}\;\gamma _{{xy}}^{0} \) :

Strain in the reference plane

\( \xi \;\text{and}\; { \upeta} \) :

Axis of the principal coordinate system

\(k\) :

Stiffness

\(\varsigma \,\text{and}\, \varphi\) :

Local natural coordinates of the element

\(P_{0} ,P_{1} ...P_{7}\) :

Generalized degree of freedom (DOF)

\(\overline{s}_{i}\) :

Shape function of node

[J]:

Jacobian matrix

\(\theta_{x} \,\text{and}\, \theta_{y}\) :

The rotational component in x and y directions in each node

\(u_{0}, v_{0} \,\text{and}\, w_{0}\) :

Displacement variables for laminated plate

\(\uptheta \) :

Ply-orientation angle

\(E_{1}\) :

Longitudinal elastic modulus of elasticity

\(E_{2}\) :

Transverse elastic modulus of elasticity

\(G_{12}\) :

Shear modulus along a longitudinal direction (first and second plane)

\(G_{13}\) :

Shear modulus along the transverse direction (first and third plane)

\(G_{23}\) :

Shear modulus in the second and third plane

\(\uprho \) :

Mass density

\(\upmu \) :

Poisson’s ratio

\(N_{s}\) :

Sample size

\(y_{i}\) :

Actual model

\(\mathop {y_{i} }\limits^{\vartriangle }\) :

Predicted model

\(\overline{y}_{i}\) :

Mean data

\(J(x)_{{{\text{actual}}}}\) :

Actual response of the model

\(J(x)_{{{\text{predicted}}}}\) :

Predicted response model

\(V_{t}\) :

Total variance

\(V_{P}\) :

Partial variance

\(S_{a}\) :

Global sensitivity index

References

  1. Maki LH, Valencia MS, Varoto PS (2021) Dynamic performance and uncertainty analysis of a piezometaelastic structure for vibration control and energy harvesting. Special topics in structural dynamics & experimental techniques. Springer, Cham, pp 215–231. https://doi.org/10.1007/978-3-030-47709-7_21

    Chapter  Google Scholar 

  2. Li S, Benson S (2021) A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders. Reliab Eng Syst Saf 213:107688. https://doi.org/10.1016/j.ress.2021.107688

    Article  Google Scholar 

  3. Paranjape HM, Aycock KI, Bonsignore C, Weaver JD, Craven BA, Duerig TW (2021) A probabilistic approach with built-in uncertainty quantification for the calibration of a superelastic constitutive model from full-field strain data. Comput Mater Sci 192:110357. https://doi.org/10.1016/j.commatsci.2021.110357

    Article  Google Scholar 

  4. Red-Horse JR, Benjamin AS (2004) A probabilistic approach to uncertainty quantification with limited information. Reliab Eng Syst Saf 85(1–3):183–190. https://doi.org/10.1016/j.ress.2004.03.011

    Article  Google Scholar 

  5. Sun T, Nielsen SR, Basu B (2019) Stochastic control of wave energy converters with constrained displacements for optimal power absorption. Appl Oce Res 89:1–1. https://doi.org/10.1016/j.apor.2019.04.022

    Article  Google Scholar 

  6. Zhao MY, Yan WJ, Yuen KV, Beer M (2021) Non-probabilistic uncertainty quantification for dynamic characterization functions using complex ratio interval arithmetic operation of multidimensional parallelepiped model. Mech Syst Signal Process 156:107559. https://doi.org/10.1016/j.ymssp.2020.107559

    Article  Google Scholar 

  7. Cao L, Liu J, Xie L, Jiang C, Bi R (2021) Non-probabilistic polygonal convex set model for structural uncertainty quantification. Appl Math Modell 89:504–518. https://doi.org/10.1016/j.apm.2020.07.025

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu J, Yu Z, Zhang D, Liu H, Han X (2021) Multimodal ellipsoid model for non-probabilistic structural uncertainty quantification and propagation. Int J Mech Mater Des. https://doi.org/10.1007/s10999-021-09551-z

    Article  Google Scholar 

  9. Hunter MD, Ferche AC, Vecchio FJ (2021) Stochastic finite element analysis of shear-critical concrete structures. ACI Struct J 118(3):71–83. https://doi.org/10.14359/51730524

    Article  Google Scholar 

  10. Liu X, Jiang L, Xiang P, Zhou W, Lai Z, Feng Y (2021) Stochastic finite element method based on point estimate and Karhunen-Loéve expansion. Arch Appl Mech 91(4):1257–1271. https://doi.org/10.1007/s00419-020-01819-8

    Article  Google Scholar 

  11. Jornet M (2021) Uncertainty quantification for the random viscous Burgers’ partial differential equation by using the differential transform method. Nonlinear Anal 209:112340. https://doi.org/10.1016/j.na.2021.112340

    Article  MathSciNet  MATH  Google Scholar 

  12. Li P, Zhang J (2022) Identification and uncertainty quantification of structural flexibility for reliability analysis. Mech Syst Signal Process 163:108104. https://doi.org/10.1016/j.ymssp.2021.108104

    Article  Google Scholar 

  13. Kumar RR, Mukhopadhyay T, Naskar S, Pandey KM, Dey S (2019) Stochastic low-velocity impact analysis of sandwich plates including the effects of obliqueness and twist. Thin-Walled Struct 145:106411. https://doi.org/10.1016/j.tws.2019.106411

    Article  Google Scholar 

  14. Karsh PK, Kumar RR, Dey S (2019) Stochastic impact responses analysis of functionally graded plates. J Braz Soc Mech Sci Eng 41(11):1–3. https://doi.org/10.1007/s40430-019-2000-8

    Article  Google Scholar 

  15. Gupta KK, Mukhopadhyay T, Roy A, Roy L, Dey S (2021) Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping. J Phys Chem Solids 155:110111

    Article  Google Scholar 

  16. Gupta KK, Roy L, Dey S (2022) Hybrid machine-learning-assisted stochastic nano-indentation behaviour of twisted bilayer graphene. J Phys Chemi Solids 167:110711

    Article  Google Scholar 

  17. Saha S, Gupta KK, Maity SR, Dey S (2022) Data-driven probabilistic performance of Wire EDM: A machine learning based approach. Proc Instit Mech Eng Part B: J Eng Manuf 236(6–7):908–919

    Article  Google Scholar 

  18. Kam TY, Jan TB (1995) First-ply failure analysis of laminated composite plates based on the layerwise linear displacement theory. Compos Struct 32(1–4):583–591. https://doi.org/10.1016/0263-8223(95)00069-0

    Article  Google Scholar 

  19. Reddy JN, Pandey AK (1987) A first-ply failure analysis of composite laminates. Comput Struct 25(3):371–393. https://doi.org/10.1016/0045-7949(87)90130-1

    Article  MATH  Google Scholar 

  20. Onkar AK, Upadhyay CS, Yadav D (2007) Probabilistic failure of laminated composite plates using the stochastic finite element method. Compos Struct 77(1):79–91. https://doi.org/10.1016/j.compstruct.2005.06.006

    Article  Google Scholar 

  21. Karsh PK, Mukhopadhyay T, Dey S (2018) Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination. Compos Struct 184:554–567. https://doi.org/10.1016/j.compstruct.2017.09.078

    Article  Google Scholar 

  22. Lal A, Singh BN, Patel D (2012) Stochastic nonlinear failure analysis of laminated composite plates under compressive transverse loading. Compos Struct 94(3):1211–1223. https://doi.org/10.1016/j.compstruct.2011.11.018

    Article  Google Scholar 

  23. Martinez JR, Bishay PL (2021) On the stochastic first-ply failure analysis of laminated composite plates under in-plane tensile loading. Compos Part C: Open Access 4:100102. https://doi.org/10.1016/j.jcomc.2020.100102

    Article  Google Scholar 

  24. Gadade AM, Lal A, Singh BN (2016) Stochastic progressive failure analysis of laminated composite plates using Puck’s failure criteria. Mech Adv Mater Struct 23(7):739–757

    Article  Google Scholar 

  25. Mooney CZ. Monte carlo simulation. Sage; (1997) Apr 7.

  26. Kushari S, Chakraborty A, Mukhyopadhyay T, Ranjan Kumar R, Ranjan Maity S, Dey S (2021) Surrogate model validation and verification for random failure analyses of composites. Recent advances in layered materials and structures. Springer, Singapore, pp 331–352

    Chapter  Google Scholar 

  27. Kushari S, Chakraborty A, Mukhopadhyay T, Maity SR, Dey S (2021) ANN-based random first-ply failure analyses of laminated composite plates. Recent advances in computational mechanics and simulations. Springer, Singapore, pp 131–142. https://doi.org/10.1007/978-981-15-8138-0_11

    Chapter  Google Scholar 

  28. Gupta KK, Mukhopadhyay T, Roy L, Dey S (2022) Hybrid machine-learning-assisted quantification of the compound internal and external uncertainties of graphene: towards inclusive analysis and design. Mater Adv. https://doi.org/10.1039/D1MA00880C

    Article  Google Scholar 

  29. Mukhopadhyay T, Naskar S, Gupta KK, Kumar R, Dey S, Adhikari S (2021) Probing the stochastic dynamics of coronaviruses: Machine learning assisted deep computational insights with exploitable dimensions. Adv Theory Sim 4(7):2000291

    Article  Google Scholar 

  30. Mukhopadhyay T, Karsh PK, Basu B, Dey S (2020) Machine learning based stochastic dynamic analysis of functionally graded shells. Compos Struct 237:111870. https://doi.org/10.1016/j.compstruct.2020.111870

    Article  Google Scholar 

  31. Li G, Rosenthal C, Rabitz H (2001) High dimensional model representations. J Phys Chem A 105(33):7765–7777. https://doi.org/10.1021/jp010450t

    Article  Google Scholar 

  32. Li E, Wang H, Li G (2012) High dimensional model representation (HDMR) coupled intelligent sampling strategy for nonlinear problems. Comput Phys Commun 183(9):1947–1955. https://doi.org/10.1016/j.cpc.2012.04.017

    Article  MathSciNet  Google Scholar 

  33. Eftekhari, A. and Scheidegger, S., (2022) High-Dimensional Dynamic Stochastic Model Representation. arXiv preprint arXiv:2202.06555.

  34. Li G, Wang SW, Rosenthal C, Rabitz H (2001) High dimensional model representations generated from low dimensional data samples I. mp-Cut-HDMR. J Math Chem 30(1):1–30. https://doi.org/10.1023/A:1013172329778

    Article  MathSciNet  MATH  Google Scholar 

  35. Boussaidi MA, Ren O, Voytsekhovsky D, Manzhos S (2020) Random sampling high dimensional model representation gaussian process regression (RS-HDMR-GPR) for multivariate function representation: application to molecular potential energy surfaces. J Phys Chem A 124(37):7598–7607. https://doi.org/10.1021/acs.jpca.0c05935

    Article  Google Scholar 

  36. Chowdhury R, Rao BN, Prasad AM (2008) High dimensional model representation for piece-wise continuous function approximation. Commun Numer Methods Eng 24(12):1587–1609

    Article  MathSciNet  Google Scholar 

  37. Shorter JA, Ip PC, Rabitz HA (1999) An efficient chemical kinetics solver using high dimensional model representation. J Phys Chem A 103(36):7192–7198. https://doi.org/10.1021/jp9843398

    Article  Google Scholar 

  38. Miller MA, Feng XJ, Li G, Rabitz HA (2012) Identifying biological network structure, predicting network behavior, and classifying network state with high dimensional model representation (HDMR). PLoS ONE 7(6):e37664. https://doi.org/10.1371/journal.pone.0037664

    Article  Google Scholar 

  39. Zuniga MM, Kucherenko S, Shah N (2013) Metamodelling with independent and dependent inputs. Comput Phys Commun 184(6):1570–1580

    Article  MathSciNet  Google Scholar 

  40. Jakeman JD, Franzelin F, Narayan A, Eldred M, Plfüger D (2019) Polynomial chaos expansions for dependent random variables. Comput Methods Appl Mech Eng 351:643–666

    Article  MathSciNet  Google Scholar 

  41. Li G, Hu J, Wang SW, Georgopoulos PG, Schoendorf J, Rabitz H (2006) Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. J Phys Chem A 110(7):2474–2485. https://doi.org/10.1021/jp054148m

    Article  Google Scholar 

  42. Manzhos S, Carrington T Jr (2006) A random-sampling high dimensional model representation neural network for building potential energy surfaces. J Chem Phys 125(8):084109. https://doi.org/10.1063/1.2336223

    Article  Google Scholar 

  43. Remacle JF, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzainet C (2012) Blossom-Quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Methods Eng 89(9):1102–1119. https://doi.org/10.1002/nme.3279

    Article  MathSciNet  MATH  Google Scholar 

  44. Chowdhury R, Adhikari S (2010) High dimensional model representation for stochastic finite element analysis. Appl Math Modell 34(12):3917–3932. https://doi.org/10.1016/j.apm.2010.04.004

    Article  MathSciNet  MATH  Google Scholar 

  45. Adhikari S, Chowdhury R, Friswell MI (2011) High dimensional model representation method for fuzzy structural dynamics. J Sound Vib 330(7):1516–1529. https://doi.org/10.1016/j.jsv.2010.10.010

    Article  Google Scholar 

  46. Rathi AK, Chakraborty A (2021) Improved moving least square-based multiple dimension decomposition (MDD) technique for structural reliability analysis. Int J Comput Methods 18(01):2050024

    Article  MathSciNet  Google Scholar 

  47. Ziehn T, Tomlin AS (2009) GUI-HDMR - A Software Tool for Global Sensitivity Analysis of Complex Models. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2008.12.002

    Article  Google Scholar 

  48. Yaghoubi V, Silani M, Zolfaghari H, Jamshidian M, Rabczuk T (2020) Nonlinear interphase effects on plastic hardening of nylon 6/clay nanocomposites: a computational stochastic analysis. J Compos Mater 54(6):753–763. https://doi.org/10.1177/0021998319868523

    Article  Google Scholar 

  49. Kushari S, Mukhopadhyay T, Chakraborty A, Maity SR, Dey S (2022) Probability-based unified sensitivity analysis for multi-objective performances of composite laminates: A surrogate-assisted approach. Compos Struct. https://doi.org/10.1016/j.compstruct.2022.115559

    Article  Google Scholar 

  50. Azadi M, Alizadeh M, Sayar H. Sensitivity analysis for effects of displacement amplitude and loading frequency on low-cycle fatigue lifetime in carbon/epoxy laminated composites. In: MATEC Web of Conferences 2018 (Vol. 165, p. 22021). EDP Sciences.https://doi.org/10.1051/matecconf/201816522021

  51. Thapa M, Paudel A, Mulani SB, Walters RW (2021) Uncertainty quantification and global sensitivity analysis for progressive failure of fiber-reinforced composites. Struct Multidiscip Opt 63(1):245–265. https://doi.org/10.1007/s00158-020-02690-5

    Article  MathSciNet  Google Scholar 

  52. Tafreshi A (2009) Shape sensitivity analysis of composites in contact using the boundary element method. Eng Anal Bound Elements 33(2):215–224. https://doi.org/10.1016/j.enganabound.2008.04.008

    Article  MathSciNet  MATH  Google Scholar 

  53. Amor N, Noman MT, Petru M, Mahmood A, Ismail A (2021) Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites. Sci Rep 11(1):1–3. https://doi.org/10.1038/s41598-021-93108-9

    Article  Google Scholar 

  54. Jesthi DK, Nayak RK (2020) Sensitivity analysis of abrasive air-jet machining parameters on machinability of carbon and glass fiber reinforced hybrid composites. Mater Today Commun 1(25):101624. https://doi.org/10.1016/j.mtcomm.2020.101624

    Article  Google Scholar 

  55. Kamiński M (2003) Sensitivity analysis of homogenized characteristics for some elastic composites. Comput Methods Appl Mech Eng 192(16–18):1973–2005. https://doi.org/10.1016/S0045-7825(03)00214-7

    Article  MathSciNet  MATH  Google Scholar 

  56. Norenberg JP, Cunha Jr A, da Silva S, Varoto PS. (2020) An application of the global sensitivity analysis on a bistable energy harvester. In: 3rd International conference on engineering vibration (ICoEV 2020) Dec 14.

  57. Ziehn T, Tomlin AS (2008) Global sensitivity analysis of a 3D street canyon model—Part I: The development of high dimensional model representations. Atmosp Environ 42(8):1857–1873. https://doi.org/10.1016/j.atmosenv.2007.11.018

    Article  Google Scholar 

  58. Kollar LP, (2003) Springer GS. Mechanics of composite structures. Cambridge university press Feb 17.

  59. Kam TY, Sher HF, Chao TN, Chang RR (1996) Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach. Int J Solids Struct 33(3):375–398. https://doi.org/10.1016/0020-7683(95)00042-9

    Article  MATH  Google Scholar 

Download references

Acknowledgements

During this work, the authors gratefully acknowledge the Aeronautics Research and Development Board (Sanction no: ARDB/01/105885/M/I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kritesh Kumar Gupta.

Additional information

Technical Editor: Andre T. Beck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 211 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushari, S., Gupta, K.K., Vaishali et al. Metamodeling-assisted probabilistic first ply failure analysis of laminated composite plates—RS-HDMR- and GPR-based approach. J Braz. Soc. Mech. Sci. Eng. 44, 374 (2022). https://doi.org/10.1007/s40430-022-03674-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03674-w

Keywords

Navigation