Skip to main content

Advertisement

Log in

Experimental investigation and finite element modeling for improved shearing cutting performance using optimized bio-inspired shearing tool

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, a novel shear blade was designed using the bio-inspired design method based on the outline curves of the badger incisors. Metal shearing experiments and numerical simulation were conducted to demonstrate the improved shearing cutting performance using the novel bio-inspired shearing tool both experimentally and numerically. The experimental results indicated the metal shearing process with bio-inspired shear blade exhibited both lower vertical force and lower temperature, especially when shearing thicker metal. Finish shear surface in Blade B exhibited the longer burnish length, which indicated Blade B also obtained a better finish surface quality. This experimental observation could be attributed to that the shear cutting process using Blade B gathered a shorter duration of elastic deformation process and a longer duration of plastic deformation process. Meanwhile, the numerical simulation results showed that the Blade B has the ability in reducing temperature in deformation zone, which is more beneficial for the extension of tool life. It can thus be concluded that optimization of cutting tool geometry using the bio-inspired curves will greatly benefit the metal shearing process. This work could provide useful guidance for the performance improvement of shear cutting process using bio-inspired design of animal prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pech P, Sága M (2018) Numerical simulation of blanking process. In: MATEC Web of conferences, pp 1–6

  2. Dudziak M, Domek G, Kołodziej A, Talas̈ka K, (2014) Contact problems between the hub and the shaft with a three-angular shape of cross-section for different angular positions. Procedia Eng 96:50–58. https://doi.org/10.1016/j.proeng.2014.12.097

    Article  Google Scholar 

  3. Blatnický M, Štauderová M, Dižo J (2017) Numerical analysis of the structure girder for vehicle axle scale calibration. Procedia Eng 177:510–515. https://doi.org/10.1016/j.proeng.2017.02.253

    Article  Google Scholar 

  4. Dubey AK, Yadava V (2008) Laser beam machining-a review. Int J Mach Tool Manuf 48:609–628. https://doi.org/10.1016/j.ijmachtools.2007.10.017

    Article  Google Scholar 

  5. Colombo V, Concetti A, Ghedini E et al (2009) High-speed imaging in plasma arc cutting: a review and new developments. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/18/2/023001

    Article  Google Scholar 

  6. Zhuang X, Ma S, Zhao Z (2017) A microstructure-based macro-micro multi-scale fine-blanking simulation of ferrite-cementite steels. Int J Mech Sci 128–129:414–427. https://doi.org/10.1016/j.ijmecsci.2017.05.018

    Article  Google Scholar 

  7. Liu G, Huang C, Su R et al (2019) 3D FEM simulation of the turning process of stainless steel 17–4PH with differently texturized cutting tools. Int J Mech Sci 155:417–429. https://doi.org/10.1016/j.ijmecsci.2019.03.016

    Article  Google Scholar 

  8. Sachnik P, Hoque SE, Volk W (2017) Burr-free cutting edges by notch-shear cutting. J Mater Process Technol 249:229–245. https://doi.org/10.1016/j.jmatprotec.2017.06.003

    Article  Google Scholar 

  9. Wu X, Bahmanpour H, Schmid K (2012) Characterization of mechanically sheared edges of dual phase steels. J Mater Process Technol 212:1209–1224. https://doi.org/10.1016/j.jmatprotec.2012.01.006

    Article  Google Scholar 

  10. Li Y, Luo M, Gerlach J, Wierzbicki T (2010) Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol 210:1858–1869. https://doi.org/10.1016/j.jmatprotec.2010.06.021

    Article  Google Scholar 

  11. MacKensen A, Golle M, Golle R, Hoffmann H (2010) Experimental investigation of the cutting force reduction during the blanking operation of AHSS sheet materials. CIRP Ann Manuf Technol 59:283–286. https://doi.org/10.1016/j.cirp.2010.03.110

    Article  Google Scholar 

  12. Kopp T, Stahl J, Demmel P et al (2016) Experimental investigation of the lateral forces during shear cutting with an open cutting line. J Mater Process Technol 238:49–54. https://doi.org/10.1016/j.jmatprotec.2016.07.003

    Article  Google Scholar 

  13. Sapanathan T, Ibrahim R, Khoddam S, Zahiri SH (2015) Shear blanking test of a mechanically bonded aluminum/copper composite using experimental and numerical methods. Mater Sci Eng A 623:153–164. https://doi.org/10.1016/j.msea.2014.11.045

    Article  Google Scholar 

  14. Da Silva MB, Wallbank J (1999) Cutting temperature: prediction and measurement methods - a review. J Mater Process Technol 88:195–202. https://doi.org/10.1016/S0924-0136(98)00395-1

    Article  Google Scholar 

  15. Komanduri R, Hou ZB (2001) A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34:653–682. https://doi.org/10.1016/S0301-679X(01)00068-8

    Article  Google Scholar 

  16. Majumdar P, Jayaramachandran R, Ganesan S (2005) Finite element analysis of temperature rise in metal cutting processes. Appl Therm Eng 25:2152–2168. https://doi.org/10.1016/j.applthermaleng.2005.01.006

    Article  Google Scholar 

  17. Tan S-L, Yang K, Yan-nan Ding XH (2017) Fracture morphologies of a hot stamped steel and comparisons with several sheet metals. J Iron Steel Res Int 24:634–640. https://doi.org/10.1016/S1006-706X(17)30095-X

    Article  Google Scholar 

  18. Cha WG, Hammer T, Gutknecht F et al (2017) Adaptive wear model for shear-cutting simulation with open cutting line. Wear 386–387:17–28. https://doi.org/10.1016/j.wear.2017.05.019

    Article  Google Scholar 

  19. Krinninger M, Steinlehner F, Opritescu D et al (2017) On the Influence of different parameters on the characteristic cutting surface when shear cutting aluminum. Procedia CIRP 63:230–235. https://doi.org/10.1016/j.procir.2017.03.156

    Article  Google Scholar 

  20. Subramonian S, Altan T, Ciocirlan B, Campbell C (2013) Optimum selection of variable punch-die clearance to improve tool life in blanking non-symmetric shapes. Int J Mach Tool Manuf 75:63–71. https://doi.org/10.1016/j.ijmachtools.2013.09.004

    Article  Google Scholar 

  21. Stemler P, Samant A, Hofmann D, Altan T (2017) Impact of servo press motion on hole flanging of high strength steels. SAE tech pap 2017-March. https://doi.org/10.4271/2017-01-0311

  22. Sartkulvanich P, Kroenauer B, Golle R et al (2010) Finite element analysis of the effect of blanked edge quality upon stretch flanging of AHSS. CIRP Ann Manuf Technol 59:279–282. https://doi.org/10.1016/j.cirp.2010.03.108

    Article  Google Scholar 

  23. Reddy NSK, Venkateswara Rao P (2005) Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling. Int J Adv Manuf Technol 26:1202–1210. https://doi.org/10.1007/s00170-004-2110-y

    Article  Google Scholar 

  24. Li A, Zhao J, Pei Z, Zhu N (2014) Simulation-based solid carbide end mill design and geometry optimization. Int J Adv Manuf Technol 71:1889–1900. https://doi.org/10.1007/s00170-014-5638-5

    Article  Google Scholar 

  25. Cui X, Guo J, Zheng J (2016) Optimization of geometry parameters for ceramic cutting tools in intermittent turning of hardened steel. Mater Des 92:424–437. https://doi.org/10.1016/j.matdes.2015.12.089

    Article  Google Scholar 

  26. Leung YC, Chan LC, Cheng CH, Lee TC (2003) The effects of tool geometry change on shearing edge finish in fine-blanking of different materials. Proc Inst Mech Eng Part B J Eng Manuf 217:1057–1062

    Article  Google Scholar 

  27. Dickinson MH (1999) Bionics: biological insight into mechanical design. Proc Natl Acad Sci U S A 96:14208–14209. https://doi.org/10.1073/pnas.96.25.14208

    Article  Google Scholar 

  28. Yongxiang L (2004) Significance and progress of bionics. J Bionic Eng 1:1–3. https://doi.org/10.1007/bf03399448

    Article  Google Scholar 

  29. Lu R, Liu X, Fu S et al (2018) Experiment and simulation for the crushing of tailor rolled tubes with various geometric parameters. Int J Mech Sci 136:371–395. https://doi.org/10.1016/j.ijmecsci.2017.12.043

    Article  Google Scholar 

  30. Zhong G, Hou Y, Dou W (2019) A soft pneumatic dexterous gripper with convertible grasping modes. Int J Mech Sci 153–154:445–456. https://doi.org/10.1016/j.ijmecsci.2019.02.028

    Article  Google Scholar 

  31. Ha NS, Lu G, Xiang X (2018) High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration. Int J Mech Sci 148:409–421. https://doi.org/10.1016/j.ijmecsci.2018.08.041

    Article  Google Scholar 

  32. Zou M, Xu S, Wei C et al (2016) A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo. Thin Walled Struct 101:222–230. https://doi.org/10.1016/j.tws.2015.12.023

    Article  Google Scholar 

  33. Zhao L, Chen W-Y, Ma J-F, Yang Y-B (2008) Structural bionic design and experimental verification of a machine tool column. J Bionic Eng 5:46–52. https://doi.org/10.1016/S1672-6529(08)60071-2

    Article  Google Scholar 

  34. Kubo MO, Yamada E (2014) The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. PLoS One 9:e90745. https://doi.org/10.1371/journal.pone.0090745

    Article  Google Scholar 

  35. Jin Y, Sun H (2011) The badgers. Northeast Forestry University Press, Haerbin, China

    Google Scholar 

  36. Ma Y, Wang H, Jia H et al (2018) Mechanical properties, microstructure and morphological properties of badger teeth. Bioinspir Biomim Nanobiomater. https://doi.org/10.1680/jbibn.17.00022

    Article  Google Scholar 

  37. Barani A, Keown AJ, Bush MB et al (2011) Mechanics of longitudinal cracks in tooth enamel. Acta Biomater 7:2285–2292. https://doi.org/10.1016/j.actbio.2011.01.038

    Article  Google Scholar 

  38. Abler WL (1992) The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18:161–183. https://doi.org/10.1017/S0094837300013956

    Article  Google Scholar 

  39. Lee JJW, Morris D, Constantino PJ et al (2010) Properties of tooth enamel in great apes. Acta Biomater 6:4560–4565. https://doi.org/10.1016/j.actbio.2010.07.023

    Article  Google Scholar 

  40. Hillson S (2005) Teeth, cambridge manuals in archaeology, illustrate. Cambridge University Press, Cambridge, England

    Google Scholar 

  41. Macdonald DW, Stewart PD, Johnson PJ et al (2002) No evidence of social hierarchy amongst feeding badgers, meles meles. Ethology 108:613–628. https://doi.org/10.1046/j.1439-0310.2002.00807.x

    Article  Google Scholar 

  42. Martín R, Rodríguez A, Delibes M (1995) Local feeding specialization by badgers (meles meles) in a mediterranean environment. Oecologia 101:45–50. https://doi.org/10.1007/BF00328898

    Article  Google Scholar 

  43. Baker G, Jones LHP, Ardrop IDW (1959) Cause of wear in sheeps’ teeth. Nature. https://doi.org/10.1038/1841583b0

    Article  Google Scholar 

  44. Roper TJ (1994) The European badger meles meles: food specialist or generalist? J Zool 234:437–452. https://doi.org/10.1111/j.1469-7998.1994.tb04858.x

    Article  Google Scholar 

  45. Molnar S (1971) Human tooth wear, tooth function and cultural variability. Am J Phys Anthropol 34:175–189. https://doi.org/10.1002/ajpa.1330340204

    Article  Google Scholar 

  46. Fong H, Sarikaya M, White SN, Snead ML (1999) Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater Sci Eng C 7:119–128. https://doi.org/10.1016/s0928-4931(99)00133-2

    Article  Google Scholar 

  47. Li M (2000) Experimental investigation on cut surface and burr in trimming aluminum autobody sheet. Int J Mech Sci 42:889–906. https://doi.org/10.1016/S0020-7403(99)00033-8

    Article  Google Scholar 

  48. Faura F, García A, Estrems M (1998) Finite element analysis of optimum clearance in the blanking process. J Mater Process Technol 80–81:121–125. https://doi.org/10.1016/S0924-0136(98)00181-2

    Article  Google Scholar 

  49. Ma LF, Huang QX, Huang ZQ et al (2012) Establishment of optimal blade clearance of stainless steel rolling-cut shear and test of shearing force parameters. J Iron Steel Res Int 19:52–61. https://doi.org/10.1016/S1006-706X(13)60008-4

    Article  Google Scholar 

  50. Tekiner Z, Nalbant M, Gürün H (2006) An experimental study for the effect of different clearances on burr, smooth-sheared and blanking force on aluminium sheet metal. Mater Des 27:1134–1138. https://doi.org/10.1016/j.matdes.2005.03.013

    Article  Google Scholar 

  51. Achouri M, Germain G, Dal Santo P, Saidane D (2014) Experimental and numerical analysis of micromechanical damage in the punching process for high-strength low-alloy steels. Mater Des 56:657–670. https://doi.org/10.1016/j.matdes.2013.11.016

    Article  Google Scholar 

  52. Taupin E, Breitling J, Wu WT, Altan T (1996) Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments. J Mater Process Technol 59:68–78. https://doi.org/10.1016/0924-0136(96)02288-1

    Article  Google Scholar 

  53. Chen ZH, Chan LC, Lee TC, Tang CY (2003) An investigation on the formation and propagation of shear band in fine-blanking process. J Mater Process Technol 138:610–614. https://doi.org/10.1016/S0924-0136(03)00141-9

    Article  Google Scholar 

  54. Luo C, Chen Z, Zhou K et al (2017) A novel method to significantly decrease the die roll during fine-blanking process with verification by simulation and experiments. J Mater Process Technol 250:254–260. https://doi.org/10.1016/j.jmatprotec.2017.07.024

    Article  Google Scholar 

  55. Zhao PJ, Chen ZH, Dong CF (2016) Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process. J Mater Process Technol 236:16–25. https://doi.org/10.1016/j.jmatprotec.2016.05.002

    Article  Google Scholar 

  56. Zhou L, Wen H (2019) A new dynamic plasticity and failure model for metals. Metals (Basel). https://doi.org/10.3390/met9080905

    Article  Google Scholar 

  57. Hoffmann H, Neugebauer R, Spur G (2012) Handbuch umformen. Hanser, München

    Book  Google Scholar 

  58. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197:157–164. https://doi.org/10.1016/0921-5093(95)09705-8

    Article  Google Scholar 

  59. Subramonian S, Altan T, Campbell C, Ciocirlan B (2013) Determination of forces in high speed blanking using FEM and experiments. J Mater Process Technol 213:2184–2190. https://doi.org/10.1016/j.jmatprotec.2013.06.014

    Article  Google Scholar 

  60. Hambli R (2001) Comparison between lemaitre and gurson damage models in crack growth simulation during blanking process. Int J Mech Sci 43:2769–2790. https://doi.org/10.1016/S0020-7403(01)00070-4

    Article  MATH  Google Scholar 

  61. Fan WF, Li JH (2009) An investigation on the damage of AISI-1045 and AISI-1025 steels in fine-blanking with negative clearance. Mater Sci Eng A 499:248–251. https://doi.org/10.1016/j.msea.2007.11.108

    Article  Google Scholar 

  62. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46:782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

Download references

Funding

The authors would like to appreciate the financial support provided by the National Natural Science Foundation of China (No. 51875242 and 52105175), the Natural Science Foundation of Jiangsu Province (No. BK20210235) and the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program (No. JSSCBS20210121).

Author information

Authors and Affiliations

Authors

Contributions

HW: Investigation, Data curation, Formal analysis, Writing–Original draft preparation; YM: Resources, Data curation, Writing–Reviewing and Editing, Funding acquisition; ZB: Resources, Writing–Reviewing and Editing; JL: Data curation, Formal analysis; LH: Data curation, Formal analysis; QW: Data curation, Resources, Writing–Reviewing and Editing. Funding acquisition.

Corresponding author

Correspondence to Qinghua Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ma, Y., Bai, Z. et al. Experimental investigation and finite element modeling for improved shearing cutting performance using optimized bio-inspired shearing tool. J Braz. Soc. Mech. Sci. Eng. 44, 267 (2022). https://doi.org/10.1007/s40430-022-03567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03567-y

Keywords

Navigation