Skip to main content
Log in

Study on the flow pattern and pressure fluctuation in a vertical volute centrifugal pump with vaned diffuser under near stall conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The vertical volute centrifugal pump is widely used in the long-distance water division project. Flow separation and vortex phenomenon can be observed in the vaned diffuser under near stall operating conditions. This kind of unsteady flow structures would result in the instability of the pump unit which affect the safety and reliability of the unit operation. In this paper, the unsteady flow patterns and induced pressure fluctuation in a vertical volute centrifugal pump with vaned diffuser were simulated based on the SAS turbulence model and refined mesh under near stall conditions. The research results show that the SST turbulence model combined with the selected grid can be validated in the CFD uncertainty analysis during the steady calculation based on the ITTC relevant procedures. The performance results predicted by the SAS turbulence model show quite good agreement with the experimental data, and the prediction errors were less than 5%. The 3D flow matching between the flow angle at the impeller blade outlet and the incidence angle of the guide vane at different spans would induce the stall inception of the pump. The flow patterns of the pump under near stall conditions were revealed combined with vorticity and streamline distributions. When the pump unit was operated under near stall conditions, the main frequency changed from the blade passing frequency 7fn to 0.9fn. It was found that the main frequency was mainly affected by the large-scale vortices in the vaned diffuser, and the main vortices in the vaned diffuser appear at every 0.9 time of the period of one revolution of impeller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

b 2 :

Impeller outlet width (mm)

C :

Correction coefficient (-)

C Q :

Flow rate coefficient (-)

C H :

Head coefficient (-)

C p :

Pressure coefficient (-)

D 2 :

Impeller outlet diameter (mm)

D :

Test results (-)

E :

Comparison error (-)

E C :

Comparison error considering correction factor (-)

f :

Frequency (Hz)

f n :

Shaft frequency (Hz)

g :

Acceleration of gravity (m/s2)

G i :

Grid number (-)

H :

Head (m)

κ :

Von Karman constant (-)

k :

Turbulent kinetic energy (m2/s2)

k c :

Coverage coefficient (-)

L νK :

Von Karman length scale (-)

n :

Rotational speed (r/min)

n s :

Specific speed (-)

p est :

Estimated limiting order of the first term accuracy (-)

p :

Transient pressure (Pa)

\(\overline p\) :

Average pressure (Pa)

Q des :

Design flow rate (m3/s)

Q m :

Mass flow (kg/s)

Q :

Pump flow rate (m3/s)

r :

Grid density ratio (-)

R :

Convergence factor (-)

S U :

Maximum value of the last two iteration cycles in the numerical simulation results (-)

S L :

Minimum value of the last two iteration cycles in the numerical simulation results (-)

S i :

Numerical simulation results (-)

S C :

Corrected numerical simulation result (-)

S ij :

Strain rate tensor (-)

T :

Time of impeller rotation (s)

T d :

Impeller torque (N·m)

t :

Time (s)

u 2 :

Impeller outlet circumferential velocity (m/s)

U SN :

Numerical error uncertainty (-)

U I :

Iterative uncertainty (-)

U G :

Grid uncertainty (-)

U T :

Time step uncertainty (-)

U P :

Other uncertainties (-)

U D :

Test uncertainty (-)

U V :

Validation uncertainty (-)

U Gc :

Grid uncertainty considering correction factor (-)

U Vc :

Validation uncertainty considering correction factor (-)

U sys :

System uncertainty (%)

U sto :

Stochastic uncertainty (%)

U' :

First derivatives of velocity (m/s2)

U'' :

Second derivatives of velocity (m/s3)

V m 2 :

Impeller outlet meridional velocity (m/s)

V 2 :

Impeller outlet absolute velocity (m/s)

V u 2 :

Impeller outlet the circumferential component of absolute velocity (m/s)

W 2 :

Impeller outlet relative velocity (m/s)

Z :

Number of impeller blades (-)

Z d :

Number of diffuser vanes (-)

α 2 :

Impeller outlet absolute flow angle (°)

α 3 :

Diffuser vane inlet setting angle (°)

β 2 :

Blade outlet setting angle (°)

η :

Efficiency (%)

δ SM :

Model error (-)

δ SN :

Numerical error (-)

δ * RE :

Error estimate (-)

δ * G :

Grid error considering correction factor (-)

ω 1 :

Specific dissipation rate (m2/s3)

ω :

Impeller rotation angular velocity (rad/s)

References

  1. Ren XM, Fan HG, Xie ZF et al (2019) Stationary stall phenomenon and pressure fluctuation in a centrifugal pump at partial load condition. Heat Mass Transf 55:2277–2288. https://doi.org/10.1007/s00231-019-02579-0

    Article  Google Scholar 

  2. Tan L, Zhu BS, Wang YC et al (2015) Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition. Eng Comput 32:1549–1566. https://doi.org/10.1108/ec-05-2014-0109

    Article  Google Scholar 

  3. Li W, Li ED, Ji LL et al (2020) Mechanism and propagation characteristics of rotating stall in a mixed-flow pump. Renew Energy 153:74–92. https://doi.org/10.1016/j.renene.2020.02.003

    Article  Google Scholar 

  4. Lu GC, Zuo ZG, Liu DM et al (2019) Energy balance and local unsteady loss analysis of flows in a low specific speed model pump-turbine in the positive slope region on the pump performance curve. Energies 12:22. https://doi.org/10.3390/en12101829

    Article  Google Scholar 

  5. Zhu Y, Tang SN, Quan LX et al (2019) Extraction method for signal effective component based on extreme-point symmetric mode decomposition and Kullback-Leibler divergence. J Braz Soc Mech Sci Eng 41:11. https://doi.org/10.1007/s40430-019-1599-9

    Article  Google Scholar 

  6. Cavazzini G, Houdeline JB, Pavesi G et al (2018) Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants. Renew Sust Energ Rev 94:399–409. https://doi.org/10.1016/j.rser.2018.06.018

    Article  Google Scholar 

  7. Shahriyari MJ, Khaleghi H, Heinrich MA (2019) Model for stall and surge in low-speed contra-rotating fans. J Eng Gas Turbines Power Trans ASME 141:11. https://doi.org/10.1115/1.4043251

    Article  Google Scholar 

  8. Yang YF, Li W, Shi W et al (2019) Numerical investigation on the unstable flow at off-design condition in a mixed-flow pump. Proc Inst Mech Eng A J Power Energy 233:849–865. https://doi.org/10.1177/0957650919833892

    Article  Google Scholar 

  9. Zhang L, He RY, Wang X et al (2019) Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions. Energy 170:305–325. https://doi.org/10.1016/j.energy.2018.12.125

    Article  Google Scholar 

  10. Du Y, Dou H-S, Lu F (2020) Counter-propagating rotating stall of vaned diffuser in a centrifugal compressor near design condition. J Turbomach. https://doi.org/10.1115/1.4048604

    Article  Google Scholar 

  11. Xue X, Wang T (2020) Experimental study on inducement and development of flow instabilities in a centrifugal compressor with different diffuser types. J Therm Sci 29:435–444. https://doi.org/10.1007/s11630-020-1223-4

    Article  Google Scholar 

  12. Zhang L, He RY, Wang SL et al (2020) A review of rotating stall in vaneless diffuser of centrifugal compressor. J Therm Sci 29:323–342. https://doi.org/10.1007/s11630-020-1261-y

    Article  Google Scholar 

  13. Ye WX, Huang RF, Jiang ZW et al (2019) Instability analysis under part-load conditions in centrifugal pump. J Mech Sci Technol 33:269–278. https://doi.org/10.1007/s12206-018-1226-1

    Article  Google Scholar 

  14. Zhang N, Yang M, Gao B et al (2014) Unsteady pressure pulsation and rotating stall characteristics in a centrifugal pump with slope volute. Adv Mech Eng. https://doi.org/10.1155/2014/710791

    Article  Google Scholar 

  15. Zhou PJ, Dai JC, Li YF et al (2018) Unsteady flow structures in centrifugal pump under two types of stall conditions. J Hydrodyn 30:1038–1044. https://doi.org/10.1007/s42241-018-0125-3

    Article  Google Scholar 

  16. Zhou PJ, Wang FJ, Mou JG (2017) Investigation of rotating stall characteristics in a centrifugal pump impeller at low flow rates. Eng Comput 34:1989–2000. https://doi.org/10.1108/ec-05-2016-0167

    Article  Google Scholar 

  17. Lu JX, Liu XB, Zeng YZ et al (2020) Investigation of the noise induced by unstable flow in a centrifugal pump. Energies 13:22. https://doi.org/10.3390/en13030589

    Article  Google Scholar 

  18. Shibata A, Hiramatsu H, Komaki S et al (2016) Study of flow instability in off design operation of a multistage centrifugal pump. J Mech Sci Technol 30:493–498. https://doi.org/10.1007/s12206-016-0101-1

    Article  Google Scholar 

  19. Xia LS, Cheng YG, Zhang XX et al (2014) Numerical analysis of rotating stall instabilities of a pump-turbine in pump mode. IOP Conf Ser Earth Environ Sci 22:032020. https://doi.org/10.1088/1755-1315/22/3/032020

    Article  Google Scholar 

  20. Widmer C, Staubli T, Ledergerber N (2011) Unstable characteristics and rotating stall in turbine brake operation of pump-turbines. J Fluids Eng Trans ASME 133:9. https://doi.org/10.1115/1.4003874

    Article  Google Scholar 

  21. Zhang YN, Zhang YN, Wu YL (2017) A review of rotating stall in reversible pump turbine. Proc Inst Mech Eng C J Eng Mech Eng Sci 231:1181–1204. https://doi.org/10.1177/0954406216640579

    Article  Google Scholar 

  22. Ouyang Y, Tang K-L, Xiang Y et al (2019) Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed. Comput Fluids 194:104296. https://doi.org/10.1016/j.compfluid.2019.104296

    Article  MathSciNet  MATH  Google Scholar 

  23. Yilmaz H, Cam O, Tangoz S et al (2017) Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames. Int J Hydrogen Energy 42:25744–25755. https://doi.org/10.1016/j.ijhydene.2017.04.080

    Article  Google Scholar 

  24. Egorov Y, Menter FR, Lechner R et al (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flows. Flow Turbul Combust 85:139–165. https://doi.org/10.1007/s10494-010-9265-4

    Article  MATH  Google Scholar 

  25. Menter FR, Egorov Y (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul Combust 85:113–138. https://doi.org/10.1007/s10494-010-9264-5

    Article  MATH  Google Scholar 

  26. Eca Ls, Vaz G, Hoekstra M (2010) Code verification, solution verification and validation in RANS solvers. p 597–605.

  27. Ittc (2002) The propulsion committee: final report and recommendations to the 23rd ITTC. In: Proceedings of the 23rd ITTC, pp 106–113.

  28. Rosetti G, Vaz G, Fujarra A (2012) URANS calculations for smooth circular cylinder flow in a wide range of reynolds numbers: solution verification and validation. J Fluids Eng 134:549. https://doi.org/10.1115/1.4007571

    Article  Google Scholar 

  29. Qiu JT, Yang CJ, Dong XQ et al (2018) Numerical simulation and uncertainty analysis of an axial-flow waterjet pump. J Mar Sci Eng 6:17. https://doi.org/10.3390/jmse6020071

    Article  Google Scholar 

  30. Stern F, Wilson RV, Coleman HW et al (2001) Comprehensive approach to verification and validation of CFD simulations Part 1: methodology and procedures. J Fluids Eng Trans ASME 123:793–802. https://doi.org/10.1115/1.1412235

    Article  Google Scholar 

  31. Wilson RV, Stern F, Coleman HW et al (2001) Comprehensive approach to verification and validation of CFD simulations Part 2: application for RANS simulation of a Cargo/Container ship. J Fluids Eng Trans ASME 123:803–810. https://doi.org/10.1115/1.1412236

    Article  Google Scholar 

  32. Du L, Ning F, Asme (2012) Scale adaptive simulation of flows past an airfoil after stall. In: Proceedings of the Asme Fluids Engineering Division Summer Meeting, 2012, Vol 1, Pts a And B, Symposia pp 1551–1560.

  33. Zhao XR, Xiao YX, Wang ZW, et al (2018) Unsteady flow and pressure pulsation characteristics analysis of rotating stall in centrifugal pumps under off-design conditions. J Fluids Eng-Trans ASME 140:7. Proceedings Paper. doi: https://doi.org/10.1115/1.4037973.

  34. Egorov Y, Menter F (2008) Development and application of SAS turbulence model in the DESIDER project. Springer, Berlin, p 261

    Google Scholar 

  35. Lucius A, Brenner G (2010) Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation. Int J Heat Fluid Flow 31:1113–1118. https://doi.org/10.1016/j.ijheatfluidflow.2010.06.005

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. U2106225), Primary Research & Development Plan of Jiangsu Province (Grant No. BE2019089), Jiangsu Provincial Science Fund for Distinguished Young Scholars (Grant No. BK20211547), Excellent Scientific and Technological Innovation Team Project in Colleges and Universities of Jiangsu Province (Grant No. SKJ(2021)-1), and Graduate Research and Innovation Projects of Jiangsu Province (Grant No. SJCX21_1682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desheng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Technical editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Zhang, D., Yang, X. et al. Study on the flow pattern and pressure fluctuation in a vertical volute centrifugal pump with vaned diffuser under near stall conditions. J Braz. Soc. Mech. Sci. Eng. 44, 118 (2022). https://doi.org/10.1007/s40430-022-03411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03411-3

Keywords

Navigation