Skip to main content
Log in

A comparison of the rheological behavior of xanthan gum and diutan gum aqueous solutions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

It was conducted thorough rheology characterization of aqueous solutions of xanthan and diutan gums, obtaining the following rheological properties: viscosity; elastic modulus, viscous modulus, complex modulus and complex viscosity, in different temperatures. The Power Law model fits very well the pseudoplastic behavior of aqueous solutions of xanthan and diutan gums. The elastic modulus (G’), in the case of aqueous solution of xanthan gum, shows larger values compared to viscous modulus (G”), indicating a gel behavior. For the aqueous solution of diutan gum, there is a crossover of the curves of G’ and G”, in the frequency sweep test, corresponding to a gel structure formation (G’ > G”). The aqueous solution of xanthan gum shows thermal degradation while aqueous solution of diutan gum shows good thermal stability. The study of rheology of aqueous solutions of xanthan gum and diutan gum can contribute to better understanding the flow behavior of these biopolymers that have many industrial and scientific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu L, Xu G, Yu L, Gong H, Dong M, Li Y (2014) The displacament efficiency and rheology of welan gum for enhanced heavy oil recovery. Polym Adv Technol 25:1122–1129

    Article  Google Scholar 

  2. García M, Carmona JA, Santos J, Alfaro M, Muñoz J (2018) Effect of temperature and shear on the microstructure of a microbial polysaccharide secreted by Sphingomonas species in aqueous solution. Int J Biol Macromol 118:2071–2075

    Article  Google Scholar 

  3. Xu L, Gong H, Dong M, Li Y (2015) Rheological properties and thickening mechanism of aqueous diutan gum solution: effects of temperature and salts. Carbohyd Polym 132:620–629

    Article  Google Scholar 

  4. Carmona JA, Lucas A, Ramírez P, Calero N (2015) Nonlinear and linear viscoelastic properties of a novel type of xanthan gum with industrial applications. J Rheol Acta 54:993–1001

    Article  Google Scholar 

  5. Chang I, Im J, Prasidhi AK, Cho GC (2015) Effects of Xanthan gum biopolymer on soil strengthening Constr. Build Mater 74:65–72

    Article  Google Scholar 

  6. Lee JS, Kim YS, Song KW (2015) Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: an experimental study using a strain-controlled rheometer. Korea-Australia Rheol J 27(3):227–239

    Article  Google Scholar 

  7. Lee JS, Song KW (2015) Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields. Korea-Australia Rheol J 27(4):297–307

    Article  Google Scholar 

  8. Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy JF (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461

    Article  Google Scholar 

  9. Khalil M, Jan BM (2012) Herschel-Bulkley rheological parameters of a novel environmentally friendly lightweight biopolymer drilling fluid from xanthan gum and starch. J Appl Polym Sci 124:595–606

    Article  Google Scholar 

  10. Khalil M, Jan BM (2012) Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling. Indus Eng Chem Res 51:4056–4068

    Article  Google Scholar 

  11. Sonebi M, McKendry D (2008) Effect of mix proportions on rheological and hardened properties of composite cement pastes. Open Constr Build Technol J 2:15–23

    Article  Google Scholar 

  12. Marudova-Zsivanovits M, Jilov N, Gencheva E (2007) Rheological investigation of xanthan gum-chromium gelation and its relation to enhanced oil recovery. J Appl Polym Sci 103:160–166

    Article  Google Scholar 

  13. Dolz M, Hernández MJ, Delegido J (2006) Oscillatory measurements for salad dressings stabilized with modified starch, xanthan gum, and locust bean gum. J Appl Polym Sci 102:897–903

    Article  Google Scholar 

  14. Gebert MS, Friend DR (1989) Purified guar galactomannan as an improved pharmaceutical excipient. Pharm Dev Technol 3:315–323

    Article  Google Scholar 

  15. Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: a review of recent research. Carbohyd Polym 90:1395–1410

    Article  Google Scholar 

  16. Petri DF, Neto JC (2010) Identification of lift - off mechanism failure for salt drill - in drilling fluid containing polymer filter cake through adsorption/desorption studies. J Petrol Sci Eng 70:89–98

    Article  Google Scholar 

  17. Xu L, Xu G, Liu T, Chen Y, Gong H (2013) The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohyd Polym 92:516–522

    Article  Google Scholar 

  18. Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by xanthomonas campestris sp. Enzyme Microb Tech. 39:197–207

    Article  Google Scholar 

  19. Mukherjee I, Sarkar D, Moulik SP (2010) Interaction of gums (Guar, Carboxymethylhydroxypropyl Guar, Diutan, and Xanthan) with surfactants (DTAB, CTAB, and TX - 100) in aqueous medium. Langmuir 26:17906–17912

    Article  Google Scholar 

  20. Xu L, Dong M, Gong H, Sun M, Li Y (2015) Effects of inorganic cations on the rheology of aqueous welan, xanthan, gellan solutions and their mixtures. Carbohyd Polym. 121:147–154

    Article  Google Scholar 

  21. Faria S, Petkowicz CL, de Morais SA, Terrones MG, de Resende MM, de França FP, Cardoso VL (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohyd Polym. 86:469–476

    Article  Google Scholar 

  22. Jansson P, Kenne L (1975) Structure of the extracellular plysaccharide from xanthomonas campestris. Carbohyd Res 45:275–282

    Article  Google Scholar 

  23. Kumar A, Rao KM, Han SS (2018) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohyd Polym. 180:128–144

    Article  Google Scholar 

  24. Schmidt W, Brouwers H, Kuhne HC, Meng B (2013) The working mechanism of starch and diutan gum in cementitious and limestone dispersions in presence of polycarboxylate ether superplasticizers. Appl Rheol. 23(5):52903

    Google Scholar 

  25. Banerjee P, Mukherjee I, Bhattacharya S, Datta S, Moulik S, Sarkar D (2009) Sorption of water vapor, hydratation, and viscosity of carboxymethylhydroxypropyl guar, diutan, and xanthan gums, and their molecular association with and without salts(NaCl, Ca〖Cl〗_2, HCOOK, CH_3 COONa,(NH_4)_2 SO_4 and MgSO_4) in aqueous solution. Langmuir. 25:11647–11565

    Article  Google Scholar 

  26. Mohammed S, Denis M (2008) Effect of mix proportions on rheological and hardened properties of composite cement pastes. Open Constr Build Technol J. 2:15–23

    Article  Google Scholar 

  27. Xu L, Qiu Z, Gong H, Liu C, Li Y, Dong M (2018) Effect of diutan microbial polysaccharide on the stability and rheological properties of O/W nanoemulsions formed with a blend of Span20-Tween20. J Disper Sci Technol. 39:1644–1654

    Article  Google Scholar 

  28. González MC, Garcia MD, Garcia JM, Alfaro-Rodriguez MC (2019) A comparison of the effect of temperature on the rheological properties of diutan and rhamsan gum aqueous solutions. Fluids 4:22

    Article  Google Scholar 

  29. García M, Cabral R, Muñoz J, Alfaro M (2017) Aplicatión de alta presión sobre disoluciones acuosas de goma diutan: influencia sobre las propriedades reológicas. Afinidad. LXXIV, 30–35.

  30. Wever D, Picchioni F, Broekhuis A (2011) Polymers for enhanced oil recovery: a paradigm for structure - property relationship in aqueous solution. Prog Polym Sci 36:1558–1628

    Article  Google Scholar 

  31. Nurakhmetova Z, Gussenov I, Aseyev V, Sigitov V, Kudaibergenov S (2018) Application of Sol - Gel transition of gellan and xanthan for enhanced oil recovery and as drilling fluids. Journal of Chemical and Metallurgy. 68 - 78

  32. Li Y, Xu L, Gong H, Ding B, Dong M, Li Y (2017) A microbial exopolysaccharide produced by sphingomonas species for enhanced heavy oil recovery at high temperature and high salinity. Energ Fuel 31:3960–3969

    Article  Google Scholar 

  33. Sonebi M (2006) Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash Cem. Concr Res 36:1609–1618

    Article  Google Scholar 

  34. Pereira RG, Mota GP, Rangel IR, Queiroz Neto JC (2019) The influence of inorganic cations addition on rheology of aqueous diutan gum solutions. Int J Sci 8:117–134

    Google Scholar 

  35. Pereira RG, Mota GP, Rangel IR, Queiroz Neto JC (2019) Temperature and salinity influence on rheology of aqueous diutan gum solution. J Eng Appl Sci 14:2193–2202

    Google Scholar 

  36. Mota G, Pereira RG (2021) The influence of concentration and temperature on the rheological behavior of diutan gum aqueous solutions. Int J Polym Anal Charact 26(8):735–753

    Article  Google Scholar 

  37. Lai N, Wen Y, Yang Z, Chen J, Zhao X, Wang D, He W, Chen Y (2020) Polymer flooding in high-temperature and high-salinity heterogeneous reservoir by using diutan gum. J Petrol Sci Eng 188:106902

    Article  Google Scholar 

  38. Sepulveda J, Montillet A, Valle DD, Amiar T, Ranchon H, Loisel C, Riaublanc A (2021) Experimental determination and modeling of flow curves of xanthan gum solutions over a large range of shear rates. Appl Rheol 31:24–38

    Article  Google Scholar 

  39. Martín-Alfonso MJ, Loaiza JM, Delgado-Sánchez C, Martínez-Boza FJ (2021) Influence of formate concentration on the rheology and thermal degradation of xanthan gum. Polymers 13:3378

    Article  Google Scholar 

  40. Romero - Zerón L, Banthong S (2018) Viscoelasticity of s supramolecular polymer network and its relevance for enhanced oil recovery in polymer rheology Eds. Rivera-Armenta JL, Cruz BAS, IntechOpen, Chapter 5

  41. Ma S, Qian Y, Kawashima S (2018) Experimental and modeling study on the non - linear structural build - up of fresh cement pastes incorporating viscosity modyfying admixtures. Cement Concrete Res. 1–9

  42. Butler M (2016) Xanthan gum applications and research studies. Nova Science Publishers, New York

    Google Scholar 

  43. Cano - Barrita P, León - Martínez F (2016) Biopolymers with viscosity - enhancing properties for concrete. Biopolymers and Biotech Admixtures for Eco - Efficient Construction Materials. Elsevier, 221 - 252

  44. Jain R, Mahto T, Mahto V (2016) Rheological investigations of water based drilling fluid system developed using synthesized nanocomposite. Korea-Australia Rheol J 28:55–65

    Article  Google Scholar 

  45. Katzbauer B (1998) Properties and applications of xanthan gum. Polym Degrad Stabil 59:81–84

    Article  Google Scholar 

  46. Mezger TG (2014) The rheology handbook. Hanover: Vincentz Network

  47. Holzwarth G (1978) Molecular weight of xanthan polysaccharide. Carbohyd Res 66:173–186

    Article  Google Scholar 

  48. Steffe JF (1996) Rheological methods in food process engineering. Freeman Press, East Lansing

    Google Scholar 

  49. Marcotte M, Hoshahili ART, Ramaswamy HS (2001) Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int 34:695–703

    Article  Google Scholar 

  50. Wang B, Wang LJ, Li D, Özkan N, Li SJ, Maoa ZH (2009) Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Carbohydr Polym 77:472–481

    Article  Google Scholar 

  51. Member M, Morris E (1995) Solubility solution rheology and salt - induced gelation of welan polysaccharide in organic solvents. Carbohydr Polym 27:23–36

    Article  Google Scholar 

  52. Morris E, Gothard M, Hember M, Manning C, Robinson G (1996) Conformational and rheological transitions of welan, rhamsan and acylated. Carbohydr Polym 30:165–175

    Article  Google Scholar 

  53. Tako M, Teruya T, Tamaki Y, Konishi T (2009) Molecular origin for rheological characteristics of native gellan gum. Colloid Polym Sci 287:1445–1454

    Article  Google Scholar 

  54. Bejenariu A, Popa M, Picton L, Le Cerf D (2010) Effect of concentration, pH and tempetature on xanthan conformation: a preliminary study before crosslinking. Rev Roum Chim 55:147–152

    Google Scholar 

  55. Paoletti S, Cesaro A, Delben F (1983) Thermally induced conformational transition of xanthan poly – electrolyte. Carbohyd Res. 123:173–178

    Article  Google Scholar 

  56. Choppe E, Puaud F, Nicolai T, Benyahia L (2010) Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydr Polym 82:1228–1235

    Article  Google Scholar 

  57. Juszczak L, Witczak M, Fortuna T, Banys A (2004) Rheological properties of commercial mustards. J Food Eng 63:209–217

    Article  Google Scholar 

  58. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 2:619–622

    Article  Google Scholar 

  59. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, New York

    MATH  Google Scholar 

  60. Gunasekaran S, Ak MM (2000) Dynamic oscillatory of foods - selected applications. Trends Food Sci Tech 11(3):115–127

    Article  Google Scholar 

Download references

Acknowledgements

The author Roberto Pereira is grateful to the National Council for Scientific and Technological Development, CNPq and the author Guilherme Mota is grateful to the CAPES, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Edson José Soares.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, G.P., Pereira, R.G. A comparison of the rheological behavior of xanthan gum and diutan gum aqueous solutions. J Braz. Soc. Mech. Sci. Eng. 44, 117 (2022). https://doi.org/10.1007/s40430-022-03406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03406-0

Keywords

Navigation