Skip to main content
Log in

Mechanical property characterization of glass/epoxy composite with varying fiber percentage and mid-plane ply orientation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Fiber-reinforced polymer composites are readily used in industries due to their exceptional characteristics, such as high strength to weight ratio and corrosion-free nature. However, their manufacturing methods may cause a change in their fiber volume fraction. The amount of fiber used in a laminate directly affects its adhesion characteristic with matrix material, which changes the mechanical response. Therefore, in the present work, glass–epoxy composites were prepared in four different fiber volume fractions: 48.13%, 54.6%, 58.15%, and 65.34%. Response of these composites was examined for mode-I and mode-II interlaminar fracture toughness and interlaminar shear strength test. Mid-plane fiber orientation is also an interesting scenario, which can affect these properties. In the present work, four different configurations of 0°//0°, 0°//15°, 0°//30° and 0°//45° were taken for all the four different fiber volume fraction cases. The experiments were conducted in a computer-controlled universal testing machine with a 1 mm/min loading speed. The interlaminar shear strength results indicate no influence of fiber fraction and mid-plane fiber orientation. However, with the increase in number of fiber layer, interlaminar shear strength increases in the range of 20.87–23.58%. Similar observation was noted in mode-I test, where increase in fiber layer causes improvement in mode-I propagation toughness by 9.86–16.74%. In mode-II test, this improvement was in the range of 2.56–17.45%. However, in the same number of fiber layer specimen, both mode-I and mode-II toughness decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

C :

Compliance

CC:

Compliance calibration

CF:

Carbon fiber

CF/EP:

Carbon fiber-reinforced epoxy

FRP:

Fiber-reinforced polymer

FVF:

Fiber volume fraction

G IC :

Critical strain energy release rate in mode-I loading

G IIC :

Critical strain energy release rate in mode-II loading

GFRP:

Glass fiber-reinforced polymer

ILFT:

Interlaminar fracture toughness

ILSS:

Interlaminar shear strength

IO:

Interface orientation

LEFM:

Linear elastic fracture mechanics

MBT:

Modified beam theory

MCC:

Modified compliance calibration

n :

Number of the fiber layer

NL:

Nonlinear

t :

Specimen thickness

UD:

Unidirectional

References

  1. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139170130

    Book  Google Scholar 

  2. Rochardjo HSB, Komotori J, Shimizua M et al (1997) Effects of the fiber content on the longitudinal tensile fracture behavior of uni-directional carbon/epoxy composites. J Mater Process Technol 67:89–93

    Article  Google Scholar 

  3. Rawat Prashant SKK (2017) An impact behavior analysis of CNT-based fiber reinforced composites validated by LS-DYNA: a review. Polym Compos 38:175–184

    Article  Google Scholar 

  4. Gaurav Anand SKK (2016) Fatigue behavior of FRP composites and CNT-embedded FRP composites: a review. Polym Compos 39:1785–1808

    Article  Google Scholar 

  5. Ansari MTA, Singh KK, Azam MS (2018) Fatigue damage analysis of fiber-reinforced polymer composites—a review. J Reinf Plast Compos 37:636–654

    Article  Google Scholar 

  6. Mahesh RP, Sai L et al (2021) Shear performance of MWCNTs modified single-lap joints of glass/epoxy laminates of glass/epoxy laminates. J Adhes Sci Technol 0:1–20

    Google Scholar 

  7. Kumar CS, Saravanakumar K, Prathap P et al (2021) Effect of the reinforcement phase on indentation resistance and damage characterization of glass/epoxy laminates using acoustic emission monitoring. Adv Mater Sci Eng. https://doi.org/10.1155/2021/5768730

    Article  Google Scholar 

  8. Pascoe MW (1973) Plain and filled plastics materials in bearings: a review. Tribology 6:184–190

    Article  Google Scholar 

  9. Arumugam J, Kumar CS, Santulli C et al (2011) A global method for the identification of failure modes in fiberglass using acoustic emission. J Test Eval. https://doi.org/10.1520/JTE103730

    Article  Google Scholar 

  10. Anyfantis KN, Tsouvalis NG (2011) Experimental and numerical investigation of Mode II fracture in fibrous reinforced composites. J Reinf Plast Compos 30:473–487

    Article  Google Scholar 

  11. Salamat-Talab M, Shokrieh MM, Mohaghegh M (2021) On the R-curve and cohesive law of glass/epoxy end-notch flexure specimens with 0//θ interface fiber angles. Polym Test 93:106992

    Article  Google Scholar 

  12. Guild FJ, Taylor AC, Downes J (2017). Compos Mater. https://doi.org/10.1002/9781118476406.emoe146

    Article  Google Scholar 

  13. Liu Z, Xia Y, Guo S (2019) Characterization methods of delamination in a plain woven CFRP composite. J Mater Sci 54:13157–13174

    Article  Google Scholar 

  14. Giuliese G, Palazzetti R, Moroni F et al (2015) Cohesive zone modelling of delamination response of a composite laminate with interleaved nylon 6,6 nanofibres. Compos Part B Eng 78:384–392

    Article  Google Scholar 

  15. Shrivastava R, Singh KK (2019) Interlaminar fracture toughness characterization of laminated composites: a review. Polym Rev 0:1–52

    Google Scholar 

  16. Russell AJ (1987) Micromechanisms of interlaminar fracture and fatigue. Polym Compos 8:342–351

    Article  Google Scholar 

  17. Yurgartis SW, Maurer JP (1993) Modelling weave and stacking configuration effects on interlaminar shear stresses in fabric laminates. Polym Compos 24:651–658

    Article  Google Scholar 

  18. Kim JK, Sham ML (2000) Impact and delamination failure of woven-fabric composites. Compos Sci Technol 60:745–761

    Article  Google Scholar 

  19. Modi V, Singh KK, Shrivastava R (2020) Effect of stacking sequence on interlaminar shear strength of multidirectional GFRP laminates. Mater Today Proc 22:2207–2214

    Article  Google Scholar 

  20. Shrivastava R, Singh KK (2019) Trends in materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-9016-6

    Book  Google Scholar 

  21. Ansari MTA, Singh KK, Azam MS (2019) Effect of stacking sequence and fiber volume fraction on the static mechanical properties of woven GFRP compositer. Springer, Singapore. https://doi.org/10.1007/978-981-13-9016-6_6

    Book  Google Scholar 

  22. Vishwakarma A, Behera A, Thawre MM et al (2019) Effect of thickness variation on static behaviour of carbon fiber reinforced polymer multidirectional laminated composite. Mater Res Express. https://doi.org/10.1088/2053-1591/ab44fa

    Article  Google Scholar 

  23. Davies P, Casari P, Carlsson LA (2005) Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen. Compos Sci Technol 65:295–300

    Article  Google Scholar 

  24. Gill AF, Robinson P, Pinho S (2009) Effect of variation in fibre volume fraction on modes I and II delamination behaviour of 5HS woven composites manufactured by RTM. Compos Sci Technol 69:2368–2375

    Article  Google Scholar 

  25. Compston P, Jar PYB (1999) Influence of fibre volume fraction on the mode I interlaminar fracture toughness of a glass-fibre/vinyl ester composite. Appl Compos Mater 6:353–368

    Article  Google Scholar 

  26. Feret V, Ghiasi H, Hubert P (2013) Effect of fibre volume fraction on mixed-mode fracture of a fabric carbon/epoxy composite. Appl Compos Mater 20:415–429

    Article  Google Scholar 

  27. Gong XJ, Hurez A, Verchery G (2010) On the determination of delamination toughness by using multidirectional DCB specimens. Polym Test 29:658–666

    Article  Google Scholar 

  28. Hudson RC, Davidson BD, Polaha JJ (1998) Effect of remote ply orientation on the perceived mode I and mode II toughness of θ/θ and θ/−θ Interfaces 123–138

  29. Suresh Kumar C, Arumugam V, Kenned JJ et al (2020) Experimental investigation on the effect of glass fiber orientation on impact damage resistance under cyclic indentation loading using AE monitoring. Nondestruct Test Eval 35:408–426

    Article  Google Scholar 

  30. Saravanakumar K, Suresh Kumar C, Arumugam V (2021) Damage monitoring of glass/epoxy laminates with different interply fiber orientation using acoustic emission. Struct Heal Monit 20:445–455

    Article  Google Scholar 

  31. Hiley MJ (2000) Delamination between multi-directional ply interfaces in carbon-epoxy composites under static and fatigue loading. Eur Struct Integr Soc 27:61–72

    Article  Google Scholar 

  32. Blondeau C, Pappas G, Botsis J (2019) Influence of ply-angle on fracture in antisymmetric interfaces of CFRP laminates. Compos Struct 216:464–476

    Article  Google Scholar 

  33. Nikbakht M, Hosseini Toudeshky H, Mohammadi B (2016) Experimental study on the effect of interface fiber orientation and utilized delamination initiation techniques on fracture toughness of glass/epoxy composite laminates. J Reinf Plast Compos 35:1722–1733

    Article  Google Scholar 

  34. Hwang JH, Lee CS, Hwang W (2001) Effect of crack propagation directions on the interlaminar fracture toughness of carbon/epoxy composite materials. Appl Compos Mater 8:411–433

    Article  Google Scholar 

  35. Bican IE, Kaman MO, Erdem S (2020) Effect of fiber orientation on interfacial fracture toughness for adhesively bonded composite plates. J Mech Sci Technol 34:757–764

    Article  Google Scholar 

  36. Solaimurugan S, Velmurugan R (2008) Influence of in-plane fibre orientation on mode I interlaminar fracture toughness of stitched glass/polyester composites. Compos Sci Technol 68:1742–1752

    Article  Google Scholar 

  37. Shetty MR, Vijay Kumar KR, Sudhir S et al (2000) Effect of fibre orientation on mode-I interlaminar fracture toughness of glass epoxy composites. J Reinf Plast Compos 19:606–620

    Article  Google Scholar 

  38. ASTM International (2010) Standard test methods for constituent content of composite prepreg 1 97: 1–6

  39. Astm D792-13 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement. Am Soc Test Mater 6

  40. ASTM International (2003) Standard test methods for void content of reinforced plastics. Astm D 2734-94 08: 3–5

  41. ASTM D5528-01 (2014) Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Am Stand Test Methods 03: 1–12

  42. Shokrieh MM, Zeinedini A (2014) A novel method for calculation of strain energy release rate of asymmetric double cantilever laminated composite beams. Appl Compos Mater 21:399–415

    Article  Google Scholar 

  43. Williams JG (1989) End corrections for orthotropic DCB specimens. Compos Sci Technol 35:367–376

    Article  Google Scholar 

  44. ASTM D7905 (2014) Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Astm 1–18

  45. ASTM (2013) Standard test method for indentation hardness of rigid plastics by means of a barcol impressor. ASTM Stand 27: 450–457

  46. Beaumont PWR (2017) The structural integrity of carbon fiber composites. https://doi.org/10.1007/978-3-319-46120-5

  47. Pagano NJ, Pipes RB (1971) The influence of stacking sequence on laminate strength. J Compos Mater 5:50–57

    Article  Google Scholar 

  48. Chang FK, Tang JM, Peterson DG (1987) The effect of testing methods on the shear strength distribution in laminated composites. J Reinf Plast Compos 6:304–318

    Article  Google Scholar 

  49. Madhukar MS, Drzal LT (1992) Fiber-matrix adhesion and its effect on composite mechanical properties III longitudinal (0°) ComPressive properties of graphite/epoxy composites. J Compos Mater 26:310–333

    Article  Google Scholar 

  50. ASTM International (2011) Standard Test method for short-beam strength of polymer matrix composite materials. Annu B ASTM Stand 00: 1–8

  51. Bowles KJ, Frimpong S (1991) Relationship between voids and interlaminar shear strength of polymer matrix composites. Int SAMPE Symp Exhib 36:1631–1648

    Google Scholar 

  52. Nunes SG, de Amorim WF, Manes A et al (2019) The effect of thickness on vacuum infusion processing of aramid/epoxy composites for ballistic application. J Compos Mater 53:383–391

    Article  Google Scholar 

  53. Zhu HY, Li DH, Zhang DX et al (2009) Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates. Trans Nonferrous Met Soc China (English Ed 2009) 19:s470–s475

    Article  Google Scholar 

  54. Costa ML, Almeida SFM, Rezende MC (2001) The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Compos Sci Technol 61:2101–2108

    Article  Google Scholar 

  55. Esnaola A, Tena I, Aurrekoetxea J et al (2016) Effect of fibre volume fraction on energy absorption capabilities of E-glass/polyester automotive crash structures. Compos Part B Eng 85:1–7

    Article  Google Scholar 

  56. Kessler MR, White SR (2001) Self-activated healing of delamination damage in woven composites. Compos Part A Appl Sci Manuf 32:683–699

    Article  Google Scholar 

  57. Kharratzadeh M, Shokrieh MM, Salamat-talab M (2018) Effect of interface fiber angle on the mode I delamination growth of plain woven glass fiber-reinforced composites. Theor Appl Fract Mech 98:1–12

    Article  Google Scholar 

  58. Lee SM (1992) Influence of fiber/matrix interfacial adhesion on composite fracture behavior. Compos Sci Technol 43:317–327

    Article  Google Scholar 

  59. Suppakul P, Bandyopadhyay S (2002) The effect of weave pattern on the mode-I interlaminar fracture energy of E-glass/vinyl ester composites. Compos Sci Technol 62:709–717

    Article  Google Scholar 

  60. Sebaey TA, Blanco N, Costa J et al (2012) Characterization of crack propagation in mode I delamination of multidirectional CFRP laminates. Compos Sci Technol 72:1251–1256

    Article  Google Scholar 

  61. Sajith S, Arumugam V, Dhakal HN (2015) Effects of curing pressure on mode II fracture toughness of uni-directional GFRP laminates. Polym Test 48:59–68

    Article  Google Scholar 

Download references

Acknowledgements

Ruchir Shrivastava gratefully acknowledges the Department of Mechanical Engineering, Indian Institute of Technology (ISM) Dhanbad, and The Ministry of Human Resource Development, Government of India, to grant him a Ph.D. scholarship.

Funding

The author(s) received no financial support for this article’s research, authorship, and/or publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchir Shrivastava.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, R., Singh, K.K. Mechanical property characterization of glass/epoxy composite with varying fiber percentage and mid-plane ply orientation. J Braz. Soc. Mech. Sci. Eng. 44, 122 (2022). https://doi.org/10.1007/s40430-022-03402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03402-4

Keywords

Navigation