Skip to main content

Advertisement

Log in

The numerical evaluation of crash performance of the pressurized thin-walled tubes

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to investigate the energy absorption characteristics of the pressurized thin-walled tubes under axial impact by numerical simulations. The Arbitrary Lagrangian–Eulerian (ALE) model with the Fluid–Structure Interaction (FSI) approach was used, for the numerical simulations, which can simulate the interaction effects between tube wall and compressed air. In this manner, the effects of the parameters such as initial internal pressure, impact velocity, regulator discharge capacity, and regulator discharge set pressure on the energy absorption behavior of pressurized tubes were examined. The results showed that the pressurized thin-walled tubes absorbed higher impact energy than non-pressurized ones, and the amount of absorbed total energy increased with an increase in the initial internal pressure. Also, the total deformation displacement of thin-walled tubes can be reduced by different values of the initial internal pressure in cases of the same impact velocities. With increasing the impact velocity, the absorbed energy by the tube wall increases depending on micro-inertia effects. As a result of this increment, both the absorbed total energy and the efficiency of pressurized air on the energy absorption capacity of pressurized thin-walled tubes improved. Also, the results show that the pressurized tubes can be used as adaptive energy absorbers with controlling the initial internal pressure and regulator set pressure for quasi-static and low-velocity impact loading conditions in cases of quite thin tube-wall thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gui C, Bai J, Zuo W (2018) Simplified crashworthiness method of automotive frame for conceptual design. Thin-Walled Struct 131:324–335. https://doi.org/10.1016/j.tws.2018.07.005

    Article  Google Scholar 

  2. Bai J, Meng G, Wu H, Zuo W (2019) Bending collapse of dual rectangle thin-walled tubes for conceptual design. Thin-Walled Struct 135:185–195. https://doi.org/10.1016/j.tws.2018.11.014

    Article  Google Scholar 

  3. Xing J, Xu P, Yao S et al (2021) Study on the layout strategy of diaphragms to enhance the energy absorption of thin-walled square tubes. Structures 29:294–304. https://doi.org/10.1016/j.istruc.2020.11.024

    Article  Google Scholar 

  4. Abramowicz W, Jones N (1984) Dynamic axial crushing of circular tubes. Int J Impact Eng 2:263–281. https://doi.org/10.1016/0734-743X(84)90010-1

    Article  Google Scholar 

  5. Karagiozova D, Alves M (2004) Transition from progressive buckling to global bending of circular shells under axial impact - Part I: experimental and numerical observations. Int J Solids Struct 41:1565–1580. https://doi.org/10.1016/j.ijsolstr.2003.10.005

    Article  MATH  Google Scholar 

  6. Guillow SR, Lu G, Grzebieta RH (2001) Quasi-static axial compression of thin-walled circular aluminium tubes. Int J Mech Sci 43:2103–2123. https://doi.org/10.1016/S0020-7403(01)00031-5

    Article  MATH  Google Scholar 

  7. Langseth M, Hopperstad OS (1996) Static and dynamic axial crushing of square thin-walled aluminium extrusions. Int J Impact Eng 18:949–968. https://doi.org/10.1016/s0734-743x(96)00025-5

    Article  Google Scholar 

  8. Hsu SS, Jones N (2004) Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. Int J Crashworthiness 9:195–217. https://doi.org/10.1533/ijcr.2004.0282

    Article  Google Scholar 

  9. Razazan M, Rezvani MJ (2018) Evaluation of the performance of initiator on energy absorption of foam-filled rectangular tubes. Exp Num Assess. https://doi.org/10.1007/s40799-017-0206-1

    Article  Google Scholar 

  10. Hong W, Jin F, Zhou J et al (2013) Quasi-static axial compression of triangular steel tubes. Thin-Walled Struct 62:10–17. https://doi.org/10.1016/j.tws.2012.08.004

    Article  Google Scholar 

  11. Wang Y, Zhang R, Liu S et al (2021) Energy absorption behaviour of an aluminium foam-filled circular-triangular nested tube energy absorber under impact loading. Structures 34:95–104. https://doi.org/10.1016/j.istruc.2021.07.065

    Article  Google Scholar 

  12. Zhang X, Zhang H (2012) Experimental and numerical investigation on crush resistance of polygonal columns and angle elements. Thin-Walled Struct 57:25–36. https://doi.org/10.1016/j.tws.2012.04.006

    Article  Google Scholar 

  13. Fan Z, Lu G, Liu K (2013) Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng Struct 55:80–89. https://doi.org/10.1016/j.engstruct.2011.09.020

    Article  Google Scholar 

  14. Sarkabiri B, Jahan A, Javad M (2017) Crashworthiness multi-objective optimization of the thin - walled grooved conical tubes filled with polyurethane foam. J Brazilian Soc Mech Sci Eng 39:2721–2734. https://doi.org/10.1007/s40430-017-0747-3

    Article  Google Scholar 

  15. Patel V, Tiwari G, Dumpala R (2019) Effect of eccentric loading on energy absorbing circular cap and open end frusta tube structures. Vacuum 166:356–363. https://doi.org/10.1016/j.vacuum.2018.10.056

    Article  Google Scholar 

  16. Meriç D, Gedikli H (2022) Multi-objective optimization of energy absorbing behavior of foam-filled hybrid composite tubes. Compos Struct 279:114771. https://doi.org/10.1016/j.compstruct.2021.114771

    Article  Google Scholar 

  17. Kavi H, Toksoy AK, Guden M (2006) Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient. Mater Des 27:263–269. https://doi.org/10.1016/j.matdes.2004.10.024

    Article  Google Scholar 

  18. Sun G, Liu T, Huang X et al (2018) Topological configuration analysis and design for foam filled multi-cell tubes. Eng Struct 155:235–250. https://doi.org/10.1016/j.engstruct.2017.10.063

    Article  Google Scholar 

  19. Mahbod M, Asgari M (2018) Thin-walled structures energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings. Thin Walled Struct 129:58–73. https://doi.org/10.1016/j.tws.2018.03.023

    Article  Google Scholar 

  20. Zarei H, Kro M (2008) Optimum honeycomb filled crash absorber design. Mater Design 29:193–204. https://doi.org/10.1016/j.matdes.2006.10.013

    Article  Google Scholar 

  21. Yin H, Wen G, Hou S, Chen K (2011) Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater Des 32:4449–4460. https://doi.org/10.1016/j.matdes.2011.03.060

    Article  Google Scholar 

  22. Singace AA (2000) Collapse behaviour of plastic tubes filled with wood sawdust. Thin-Walled Struct 37:163–187. https://doi.org/10.1016/S0263-8231(00)00012-4

    Article  Google Scholar 

  23. Duarte APC, Silva BA, Silvestre N et al (2016) Tests and design of short steel tubes filled with rubberised concrete. Eng Struct 112:274–286. https://doi.org/10.1016/j.engstruct.2016.01.018

    Article  Google Scholar 

  24. Lu GY, Han ZJ, Lei JP, Zhang SY (2009) A study on the impact response of liquid-filled cylindrical shells. Thin-Walled Struct 47:1557–1566. https://doi.org/10.1016/j.tws.2009.05.005

    Article  Google Scholar 

  25. Zhang XW, Yu TX (2009) Energy absorption of pressurized thin-walled circular tubes under axial crushing. Int J Mech Sci 51:335–349. https://doi.org/10.1016/j.ijmecsci.2009.03.002

    Article  Google Scholar 

  26. Hou T, Pearce GMK, Prusty BG et al (2015) Pressurised composite tubes as variable load energy absorbers. Compos Struct 120:346–357. https://doi.org/10.1016/j.compstruct.2014.09.060

    Article  Google Scholar 

  27. Reid SR, Reddy TY (1986) Axial crushing of foam-filled tapered sheet metal tubes. Int J Mech Sci 28:643–656. https://doi.org/10.1016/0020-7403(86)90010-X

    Article  Google Scholar 

  28. Reddy TY, Wall RJ (1988) Axial compression of foam-filled thin-walled circular tubes. Int J Impact Eng 7:151–166. https://doi.org/10.1016/0734-743X(88)90023-1

    Article  Google Scholar 

  29. Toksoy AK, Güden M (2005) The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes. Thin-Walled Struct 43:333–350. https://doi.org/10.1016/j.tws.2004.07.007

    Article  Google Scholar 

  30. Hanssen AG, Langseth M, Hopperstad OS (2000) Static and dynamic crushing of square aluminum extrusions with aluminum foam filler. Int J Impact Eng 24:347–383. https://doi.org/10.1016/S0734-743X(99)00169-4

    Article  Google Scholar 

  31. Duarte I, Vesenjak M, Krstulović-Opara L, Ren Z (2015) Static and dynamic axial crush performance of in-situ foam-filled tubes. Compos Struct 124:128–139. https://doi.org/10.1016/j.compstruct.2015.01.014

    Article  Google Scholar 

  32. Hu LL, Zeng ZH, Yu TX (2016) Axial crushing of pressurized cylindrical tubes. Int J Mech Sci 107:126–135. https://doi.org/10.1016/j.ijmecsci.2016.01.011

    Article  Google Scholar 

  33. Kuleyin H, Gümrük R (2019) Pressure wave propagation in pressurized thin-walled circular tubes under axial impact. Int J Impact Eng 130:138–152. https://doi.org/10.1016/j.ijimpeng.2019.04.015

    Article  Google Scholar 

  34. Sun Y, Li QM (2015) Effect of entrapped gas on the dynamic compressive behaviour of cellular solids. Int J Solids Struct 63:50–67. https://doi.org/10.1016/j.ijsolstr.2015.02.034

    Article  Google Scholar 

  35. Ferdynus M, Kotełko M, Urbaniak M (2019) Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact - Numerical and experimental study. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2019.106239

    Article  Google Scholar 

  36. Zhang X (2009) Conceptual study of adaptive energy absorbers

  37. Casselle O, Tyan T (2005) Effect of trigger variation on frontal rail crash performance. SAE Tech Pap. https://doi.org/10.4271/2005-01-0358

    Article  Google Scholar 

  38. Chen G, Chen XM, Shi MF et al (2005) Experimental and numerical studies of crash trigger sensitivity in frontal impact. SAE Tech Pap. https://doi.org/10.4271/2005-01-0355

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the Karadeniz Technical University Research Fund under Grant No. FHD-2018-7193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdi Kuleyin.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleyin, H., Gümrük, R. The numerical evaluation of crash performance of the pressurized thin-walled tubes. J Braz. Soc. Mech. Sci. Eng. 44, 85 (2022). https://doi.org/10.1007/s40430-022-03392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03392-3

Keywords

Navigation