Skip to main content

Advertisement

Log in

Modelling and analysis of machine tool with parallel–serial kinematics based on O-X glide mechanism

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Machine tools with a parallel–serial (hybrid) kinematics structures represent a compromise solution that combines the advantages of traditional serial and parallel kinematic in the building of machine tools. By selecting a planar parallel mechanism with optimally designed components, the supporting structure of the machine tool is obtained with improved kinematic and dynamic characteristics in the desired direction with a satisfactory working space. Such solutions are suitable for modern, multifunctional machine tools. The paper describes the original parallel–serial 3-axis O-X mechanism developed for the purpose of building of multifunctional machine tools. The basic feature of the O-X mechanism is a dual kinematic structure that allows the formation of two different workspaces with different characteristics which can be adapted to different applications. The paper presents the first prototype of a machine, developed for the purpose of testing of characteristics with an open control system based on the LinuxCNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chanal H, Duc E, Ray P (2006) A study of the impact of machine tool structure on machining processes. Int J Mach Tools Manuf 46:98–106. https://doi.org/10.1016/j.ijmachtools.2005.05.004

    Article  Google Scholar 

  2. Tang T, Zhang J (2019) Conceptual design and kinetostatic analysis of a modular parallel kinematic machine-based hybrid machine tool for large aeronautic components. Robot Comput-Integr Manuf 57:1–16. https://doi.org/10.1016/j.rcim.2018.10.012

    Article  Google Scholar 

  3. Uriarte L, Zatarain M, Axinte D, Yagüe-Fabra J, Ihlenfeldt S, Eguia J, Olarra A (2013) Machine tools for large parts. CIRP Ann 62:731–750. https://doi.org/10.1016/j.cirp.2013.05.009

    Article  Google Scholar 

  4. Glavonjic M, Milutinovic D (2008) Parallel structured milling machines with long X travel. Robot Comput Integr Manuf 24:310–320. https://doi.org/10.1016/j.rcim.2006.12.001

    Article  Google Scholar 

  5. Weck M, Staimer D (2002) Parallel kinematic machine tools—current state and future potentials. CIRP Ann 51:671–683. https://doi.org/10.1016/S0007-8506(07)61706-5

    Article  Google Scholar 

  6. Tanev TK (2000) Kinematics of a hybrid (parallel–serial) robot manipulator. Mech Mach Theory 35:1183–1196. https://doi.org/10.1016/S0094-114X(99)00073-7

    Article  Google Scholar 

  7. Wu J, Wang J, Li T, Wang L (2007) Dynamic analysis of the 2-DOF planar parallel manipulator of a heavy duty hybrid machine tool. Int J Adv Manuf Technol 34:413–420. https://doi.org/10.1007/s00170-006-0605-4

    Article  Google Scholar 

  8. Wu J, Li T, Liu X, Wang L (2007) Optimal kinematic design of a 2-DOF planar parallel manipulator. Tsinghua Sci Technol 12:269–275. https://doi.org/10.1016/S1007-0214(07)70040-8

    Article  Google Scholar 

  9. Chen YY, Han XZ, Gao F, Wei ZH, Zhang Y (2015) Workspace analysis of a 2-DOF planar parallel mechanism. In: Proceedings of the international conference of electrical, automation and mechanical engineering (EAME 2015), Atlantis Press

  10. Zhang DS, Xu YD, Yao JT, Zhao YS (2018) Analysis and optimization of a spatial parallel mechanism for a new 5-DOF hybrid serial-parallel manipulator. Chin J Mech Eng 31:54. https://doi.org/10.1186/s10033-018-0251-4

    Article  Google Scholar 

  11. Liu XJ, Wang QM, Wang J (2005) Kinematics, dynamics and dimensional synthesis of a novel 2-DoF translational manipulator. J Intell Rob Syst 41:205–224. https://doi.org/10.1007/s10846-005-3507-z

    Article  Google Scholar 

  12. Bi ZM, Jin Y (2011) Kinematic modeling of Exechon parallel kinematic machine. Robot Comput Integr Manuf 27:186–193. https://doi.org/10.1016/j.rcim.2010.07.006

    Article  Google Scholar 

  13. Zhang H, Fang H, Fang Y, Jiang B (2018) Workspace analysis of a hybrid kinematic machine tool with high rotational applications. Math Probl Eng 2018:2607497. https://doi.org/10.1155/2018/2607497

    Article  Google Scholar 

  14. Wu G, Zou P (2017) Stiffness analysis and comparison of a Biglide parallel grinder with alternative spatial modular parallelograms. Robotica (Cambridge) 35:1310–1326. https://doi.org/10.1017/S0263574716000059

    Article  Google Scholar 

  15. Wu G (2017) Optimal structural design of a Biglide parallel drill grinder. Int J Adv Manuf Technol 90:2979–2990. https://doi.org/10.1007/s00170-016-9625-x

    Article  Google Scholar 

  16. Rezaei A, Akbarzadeh A (2013) Position and stiffness analysis of a new asymmetric 2PRR–PPR parallel CNC machine. Adv Robot 27:133–145. https://doi.org/10.1080/01691864.2013.751154

    Article  Google Scholar 

  17. Assal SFM (2015) A novel planar parallel manipulator with high orientation capability for a hybrid machine tool: kinematics, dimensional synthesis and performance evaluation. Robotica 35:1031–1053. https://doi.org/10.1017/S0263574715000958

    Article  Google Scholar 

  18. Singh Y, Santhakumar M (2016) Performance investigations on optimum mechanical design aspects of planar parallel manipulators. Adv Robot 30:652–675. https://doi.org/10.1080/01691864.2016.1144523

    Article  Google Scholar 

  19. Tabakovic S, Zeljkovic M., Gatalo R, Mladjenovic C. Device for manipulating workpieces or tools in machine tools and industrial manipulators. In: S. Intellectual Property Office (Ed.), Republic of Serbia

  20. Tabakovic S, Zivanovic S, Zeljkovic M (2015) The application of virtual prototype in design of a hybrid mechanism based machine tools. J Prod Eng 18:77–80

    Google Scholar 

  21. Zivanovic S, Tabakovic S, Zeljkovic M, Milojevic Z (2016) Configuring a machine tool based on hybrid O-X glide mechanism. Mach Des 8:141–148

    Google Scholar 

  22. Mehrabi MG, Ulsoy AG, Koren Y (2000) Reconfigurable manufacturing systems: key to future manufacturing. J Intell Manuf 11:403–419. https://doi.org/10.1023/A:1008930403506

    Article  Google Scholar 

  23. Moriwaki T (2008) Multi-functional machine tool. CIRP Ann 57:736–749. https://doi.org/10.1016/j.cirp.2008.09.004

    Article  Google Scholar 

  24. Zhu XR, Shen HP, Liu CF (2010) Workspace and singularity analysis of a 2-DOF parallel manipulator. Mach Des Res 20:4

    Google Scholar 

  25. Vasilic G, Zivanovic S, Kokotovic B, Dimic Z (2019) Configuring and analysis of a class of generalized reconfigurable 2-axis parallel kinematic machine. J Mech Sci Technol 33:3407–3421. https://doi.org/10.1007/s12206-019-0636-z

    Article  Google Scholar 

  26. Milutinovic D, Glavonjic M, Kvrgic V, Zivanovic S (2005) A new 3-DOF spatial parallel mechanism for milling machines with long X travel. CIRP Ann 54:345–348. https://doi.org/10.1016/S0007-8506(07)60119-X

    Article  Google Scholar 

  27. Slavkovic N, Zivanovic S, Kokotovic B, Dimic Z, Milutinovic M (2020) Simulation of compensated tool path through virtual robot machining model. J Braz Soc Mech Sci Eng 42:374. https://doi.org/10.1007/s40430-020-02461-9

    Article  Google Scholar 

  28. Toquica JS, Zivanovic S, Bonnard R, Rodriguez E, Alvares AJ, Ferreira JCE (2019) STEP-NC-based machining architecture applied to industrial robots. J Braz Soc Mech Sci Eng 41:314. https://doi.org/10.1007/s40430-019-1811-y

    Article  Google Scholar 

  29. Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley

    Google Scholar 

  30. PTC, Creo Parametric. https://www.ptc.com/en/products/creo. Accessed 20 June 2020

  31. LinuxCNC, Software for real-time control. http://linuxcnc.org/. Accessed 20 June 2020

  32. Glavonjic M, Milutinovic D, Zivanovic S, Dimic Z, Kvrgic V (2010) Desktop 3-axis parallel kinematic milling machine. Int J Adv Manuf Technol 46:51–60. https://doi.org/10.1007/s00170-009-2070-3

    Article  Google Scholar 

  33. Lee CG, Park SC (2014) Survey on the virtual commissioning of manufacturing systems. J Comput Des Eng 1:213–222. https://doi.org/10.7315/JCED.2014.021

    Article  Google Scholar 

  34. I.S. Organisation (2005) Test code for machine tools—part 4: circular tests for numerically controlled machine tools. In: Industrial automation systems and integration

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Science and Technological Development of Serbia for providing financial support that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasa Zivanovic.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zivanovic, S., Tabakovic, S., Zeljkovic, M. et al. Modelling and analysis of machine tool with parallel–serial kinematics based on O-X glide mechanism. J Braz. Soc. Mech. Sci. Eng. 43, 456 (2021). https://doi.org/10.1007/s40430-021-03171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03171-6

Keywords