Skip to main content

Advertisement

Log in

Broadband vibration attenuation from a one-dimensional acoustic black hole resonator for plate-on-plate structures

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the vibrational behaviour and attenuation performance of a plate connected to a plate-like resonator equipped with a 1D acoustic black hole. The ABH principle relies on trapping the incident waves and consequently absorbing the incoming mechanical energy. Conversely, the ABH acts as a conventional dynamic absorber in which the vibration modes of the wedge act as a multifrequency resonator when attached to a host structure. The typically added damping layer enriches its dynamic, providing superior attenuation across a broader frequency band. This plate-like resonator can be used as a vibration control alternative to the use of single or multiple resonators attached to the host structure. In this work, a mobility-based approach is used to connect both the host plate and the plate-like resonator with an ABH termination. The response of both structures is given by a Finite Element model implemented by the authors in MATLAB, and the point connections are assumed to be rigid. The results are compared to that of a uniform plate acting as a multifrequency resonator, and it is shown that the ABH-based vibration attenuation leads to a reduction of up to 20 dB across multiple third-octave bands in the mobility response of the coupled system. Additionally, the energy flow is also investigated, and it is shown that the ABH-plate resonator yields up to 50 dB reduction also over multiple third-octave bands in the spatially averaged kinetic energy spectra. The addition of the film of viscoelastic material enhances its attenuation performance by up to 30 dB compared to the geometric effect due to the ABHs. The results suggest that this ABH-based solution can be a viable engineering approach and opens the way for new and innovative solutions in vibration control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mironov MA (1988) Propagation of flexural waves in a plate whose thickness decreases smoothly to zero in a finite interval. Sov Phys Acoust 34:318–319

    Google Scholar 

  2. Krylov VV, Tilman FJBS (2004) Acoustic “black holes” for flexural waves as effective vibration dampers. J Sound Vib 274:605–619. https://doi.org/10.1016/j.jsv.2003.05.010

    Article  Google Scholar 

  3. Krylov VV, Winward RETB (2007) Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. J Sound Vib 300:43–49. https://doi.org/10.1016/j.jsv.2006.07.035

    Article  Google Scholar 

  4. Pelat A, Gautier F, Conlon SC, Semperlotti F (2020) The acoustic black hole: a review of theory and applications. J Sound Vib 476:115316. https://doi.org/10.1016/j.jsv.2020.115316

    Article  Google Scholar 

  5. Hook K, Cheer J, Daley S (2019) A parametric study of an acoustic black hole on a beam. J Acoust Soc Am 145:3488–3498. https://doi.org/10.1121/1.5111750

    Article  Google Scholar 

  6. Jung J, Goo S, Wang S (2020) Investigation of flexural wave band gaps in a locally resonant metamaterial with plate-like resonators. Wave Motion 93:102492. https://doi.org/10.1016/j.wavemoti.2019.102492

    Article  MathSciNet  MATH  Google Scholar 

  7. Jung J, Kim HG, Goo S, Chang KJ, Wang S (2019) Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mech Syst Signal Process 112:206–231. https://doi.org/10.1016/j.ymssp.2018.11.050

    Article  Google Scholar 

  8. Goffaux C, Sánchez-Dehesa J, Yeyati AL, Lambin P, Khelif A, Vasseur JO et al (2002) Evidence of Fano-like interference phenomena in locally resonant materials. Phys Rev Lett 88:225502. https://doi.org/10.1103/PhysRevLett.88.225502

    Article  Google Scholar 

  9. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT et al (2000) Locally resonant sonic materials. Science (80- ) 289:1734–6. https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  10. Zhou T, Cheng L (2018) A resonant beam damper tailored with acoustic black hole features for broadband vibration reduction. J Sound Vib 430:174–184. https://doi.org/10.1016/j.jsv.2018.05.047

    Article  Google Scholar 

  11. Zhou T, Cheng L (2018) Broadband resonance suppressions using a resonant beam damper with embedded acoustic black hole features. Proc. ISMA 2018: Int. Conf. Noise Vib. Eng. USD 2018 - Int. Conf. Uncertain. Struct. Dyn., Leuven: n.d

  12. O’Boy DJ, Bowyer EP, Krylov VV (2011) Point mobility of a cylindrical plate incorporating a tapered hole of power-law profile. J Acoust Soc Am 129:3475–3482. https://doi.org/10.1121/1.3585844

    Article  Google Scholar 

  13. Deng J, Zheng L, Zeng P, Zuo Y, Guasch O (2019) Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mech Syst Signal Process 118:461–476. https://doi.org/10.1016/j.ymssp.2018.08.053

    Article  Google Scholar 

  14. Bowyer EP, Krylov VV (2014) Damping of flexural vibrations in turbofan blades using the acoustic black hole effect. Appl Acoust 76:359–365. https://doi.org/10.1016/j.apacoust.2013.09.009

    Article  Google Scholar 

  15. Pelat A, Denis V, Gautier F (2015) Experimental and theoretical study of the reflection coefficient of an abh beam termination. INTERNOISE 2015: 46th Int. Congr. Noise Control Eng., San Francisco, USA

  16. Tang L, Cheng L (2017) Ultrawide band gaps in beams with double-leaf acoustic black hole indentations. J Acoust Soc Am 142:2802–2807. https://doi.org/10.1121/1.5009582

    Article  Google Scholar 

  17. Gao N-S, Guo X-Y, Cheng B-Z, Zhang Y-N, Wei Z-Y, Hou H (2019) Elastic wave modulation in hollow metamaterial beam with acoustic black hole. IEEE Access 7:124141–124146. https://doi.org/10.1109/ACCESS.2019.2938250

    Article  Google Scholar 

  18. White RG (1986) Chapter 26: Vibration control (II). In: White RG, Walker JG, editors. Noise Vib., Ellis Horwood Publishers

  19. Gardonio P, Brennan MJ (2004) Chapter 9: Mobility and impedance methods in structural dynamics. In: Fahy F, Walker J, editors. Adv. Appl. Acoust. Noise Vib., Spon Press

  20. Souza MR (2018) Variability in the dynamic response of connected structures possessing spatially slowly varying properties. Ph.D. Thesis, University of Southampton

  21. Souza MR, Ferguson NS (2020) The effect of isolation in controlling the variability of point connected structures with uncertain structural attachments. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1177/0954406220939607

    Article  Google Scholar 

  22. O’Boy DJ, Krylov VV, Kralovic V (2010) Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. J Sound Vib 329:4672–4688. https://doi.org/10.1016/j.jsv.2010.05.019

    Article  Google Scholar 

  23. Karlos A, Elliott SJ, Cheer J (2019) Higher-order WKB analysis of reflection from tapered elastic wedges. J Sound Vib 449:368–388. https://doi.org/10.1016/j.jsv.2019.02.041

    Article  Google Scholar 

  24. Adini A, Clough RW (1961) Analysis of plate bending by the finite element method

  25. Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA J 1:1631–1637. https://doi.org/10.2514/3.1869

    Article  Google Scholar 

  26. Petyt M (2010) Introduction to finite element vibration analysis, 2nd edn. Cambridge University Press, New York, USA

    Book  Google Scholar 

  27. University of Colorado (2017) Advanced finite element methods (ASEN 3637): Chapter 22

  28. Ross D, Ungar EE, Kerwin EM (1960) Damping of plate flexural vibrations by means of viscoelastic laminae. Struct Damping: 49–87

  29. Aklouche O, Pelat A, Maugeais S, Gautier F (2016) Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate. J Sound Vib 375:38–52. https://doi.org/10.1016/j.jsv.2016.04.034

    Article  Google Scholar 

  30. Lee JY, Jeon W (2021) Wave-based analysis of the cut-on frequency of curved acoustic black holes. J Sound Vib 492:115731. https://doi.org/10.1016/j.jsv.2020.115731

    Article  Google Scholar 

  31. Cremer L, Heckl M, Petersson BAT (2005) Structure-borne sound: Structural vibrations and sound radiation at audio frequencies. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council of Research CNPq (Grant Agreement ID 150143/2019-2 and 420304/2018-5) and the São Paulo Research Foundation (FAPESP) ENVIBRO Thematic Grant (Grant Agreement ID 2018/15894-0) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos R. Souza.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Mass and Stiffness matrices for the ACM element

Appendix: Mass and Stiffness matrices for the ACM element

A piecewise constant approach was considered for the thickness of each element of the ABH resonator. Please note that where the thickness \(h\) is mentioned, this value is given thickness at the central point of the element, following the decay along the ABH termination.

$$ \left[ {\mathbf{m}} \right]_{e} = \frac{\rho hab}{{6300}}\left[ {\begin{array}{*{20}c} {{\mathbf{m}}_{11} } & {{\mathbf{m}}_{21}^{T} } \\ {{\mathbf{m}}_{21} } & {{\mathbf{m}}_{22} } \\ \end{array} } \right] $$
(14)

where \(\left[ {\mathbf{m}} \right]_{e}\) is the element inertia matrix, \(\rho\) is the density, \(h\) is the plate’s thickness, and \(2a\) and \(2b\) are the size of the element’s edges.

$$ {\mathbf{m}}_{{11}} = \left[ {\begin{array}{*{20}l} {3454} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {922b} \hfill & {320b^{2} } \hfill & {} \hfill & {} \hfill & {} \hfill & {{\text{Sym}}} \hfill \\ { - 922a} \hfill & { - 252ab} \hfill & {320a^{2} } \hfill & {} \hfill & {} \hfill & {} \hfill \\ {1226} \hfill & {398b} \hfill & { - 548a} \hfill & {3454} \hfill & {} \hfill & {} \hfill \\ {398b} \hfill & {160b^{2} } \hfill & {160b^{2} } \hfill & {922b} \hfill & {320b^{2} } \hfill & {} \hfill \\ {548a} \hfill & {168ab} \hfill & {240a^{2} } \hfill & {922a} \hfill & {252ab} \hfill & {320a^{2} } \hfill \\ \end{array} } \right] $$
(15)
$$ {\mathbf{m}}_{{22}} = \left[ {\begin{array}{*{20}l} {3454} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ { - 922b} \hfill & {320b^{2} } \hfill & {} \hfill & {} \hfill & {} \hfill & {{\text{Sym}}} \hfill \\ {922{\text{a}}} \hfill & { - 252ab} \hfill & {320a^{2} } \hfill & {} \hfill & {} \hfill & {} \hfill \\ {1226} \hfill & { - 398b} \hfill & {548a} \hfill & {3454} \hfill & {} \hfill & {} \hfill \\ { - 398b} \hfill & {160b^{2} } \hfill & { - 168ab} \hfill & { - 922b} \hfill & {320b^{2} } \hfill & {} \hfill \\ { - 548a} \hfill & {168ab} \hfill & { - 240a^{2} } \hfill & { - 922a} \hfill & {252ab} \hfill & {320a^{2} } \hfill \\ \end{array} } \right] $$
(16)
$$ {\mathbf{m}}_{{21}} = \left[ {\begin{array}{*{20}l} {394} \hfill & {232b} \hfill & { - 232a} \hfill & {1226} \hfill & {548b} \hfill & {398a} \hfill \\ { - 232b} \hfill & { - 120b^{2} } \hfill & {112ab} \hfill & { - 548b} \hfill & { - 240b^{2} } \hfill & { - 168ab} \hfill \\ {232a} \hfill & {112ab} \hfill & { - 12a^{2} } \hfill & {398a} \hfill & {168ab} \hfill & {160a^{2} } \hfill \\ {1226} \hfill & {548b} \hfill & { - 398a} \hfill & {394} \hfill & {232b} \hfill & {232a} \hfill \\ { - 548b} \hfill & { - 240b^{2} } \hfill & {168ab} \hfill & { - 232b} \hfill & { - 120b^{2} } \hfill & { - 112ab} \hfill \\ { - 398a} \hfill & { - 168ab} \hfill & {160a^{2} } \hfill & { - 232a} \hfill & { - 112ab} \hfill & { - 120a^{2} } \hfill \\ \end{array} } \right] $$
(17)
$$ \left[ {\mathbf{k}} \right]_{e} = \frac{{Eh}}{{48\left( {1 - \nu ^{2} } \right)ab}}\left[ {\begin{array}{*{20}l} {{\mathbf{k}}_{{11}} } \hfill & {} \hfill & {{\text{sym}}} \hfill & {} \hfill \\ {{\mathbf{k}}_{{21}} } \hfill & {{\mathbf{k}}_{{22}} } \hfill & {} \hfill & {} \hfill \\ {{\mathbf{k}}_{{31}} } \hfill & {{\mathbf{k}}_{{32}} } \hfill & {{\mathbf{k}}_{{33}} } \hfill & {} \hfill \\ {{\mathbf{k}}_{{41}} } \hfill & {{\mathbf{k}}_{{42}} } \hfill & {{\mathbf{k}}_{{43}} } \hfill & {{\mathbf{k}}_{{44}} } \hfill \\ \end{array} } \right] $$
(18)

where \(\left[ {\mathbf{k}} \right]_{e}\) is the element stiffness matrix, \(E\) is plate’s Young’s Modulus, \(h\) is the thickness of the plate, \(\nu\) is the Poisson’s ratio, and \(2a\) and \(2b\) are the size of the element’s edges.

$$ {\mathbf{k}}_{11} = \left[ {\begin{array}{*{20}c} {4\left( {\beta^{2} + \alpha^{2} } \right) + \frac{2}{5}\left( {7 - 2\nu } \right) } & {} & {{\text{Sym}}} \\ {2\left[ {2\alpha^{2} + \frac{1}{5}\left( {1 + 4\nu } \right)} \right]b} & {4\left[ {\frac{4}{3}\alpha^{2} + \frac{4}{15}\left( {1 - \nu } \right)} \right]b^{2} } & {} \\ {2\left[ { - 2\beta^{2} - \frac{1}{5}\left( {1 + 4\nu } \right)} \right]a} & { - 4\nu ab} & {4\left[ {\frac{4}{3}\beta^{2} + \frac{4}{15}\left( {1 - \nu } \right)} \right]a^{2} } \\ \end{array} } \right] $$
(19)
$$ {\mathbf{k}}_{21} = \left[ {\begin{array}{*{20}c} { - \left[ {2\left( {2\beta^{2} - \alpha^{2} } \right) + \frac{2}{5}\left( {7 - 2\nu } \right)} \right] } & {2\left[ {\alpha^{2} - \frac{1}{5}\left( {1 + 4\nu } \right)} \right]b} & {2\left[ {2\beta^{2} + \frac{1}{5}\left( {1 - \nu } \right)} \right]a} \\ {2\left[ {\alpha^{2} - \frac{1}{5}\left( {1 + 4\nu } \right)} \right]b} & {4\left[ {\frac{2}{3}\alpha^{2} - \frac{4}{15}\left( {1 - \nu } \right)} \right]b^{2} } & 0 \\ { - 2\left[ {2\beta^{2} + \frac{1}{5}\left( {1 - \nu } \right)} \right]a} & 0 & {4\left[ {\frac{2}{3}\beta^{2} - \frac{1}{15}\left( {1 - \nu } \right)} \right]a^{2} } \\ \end{array} } \right]{ } $$
(20)
$$ {\mathbf{k}}_{31} = \left[ {\begin{array}{*{20}c} { - \left[ {2\left( {2\beta^{2} + \alpha^{2} } \right) - \frac{2}{5}\left( {7 - 2\nu } \right)} \right] } & {2\left[ { - \alpha^{2} + \frac{1}{5}\left( {1 - \nu } \right)} \right]b} & {2\left[ {\beta^{2} - \frac{1}{5}\left( {1 - \nu } \right)} \right]a} \\ {2\left[ {\alpha^{2} - \frac{1}{5}\left( {1 - \nu } \right)} \right]b} & {4\left[ {\frac{1}{3}\alpha^{2} + \frac{1}{15}\left( {1 - \nu } \right)} \right]b^{2} } & 0 \\ {2\left[ { - \beta^{2} + \frac{1}{5}\left( {1 - \nu } \right)} \right]a} & 0 & {4\left[ {\frac{1}{3}\beta^{2} + \frac{1}{15}\left( {1 - \nu } \right)} \right]a^{2} } \\ \end{array} } \right] $$
(21)
$$ {\mathbf{k}}_{41} = \left[ {\begin{array}{*{20}c} {2\left( {\beta^{2} - 2\alpha^{2} } \right) - \frac{2}{5}\left( {7 - 2\nu } \right) } & {2\left[ { - 2\alpha^{2} - \frac{1}{5}\left( {1 - \nu } \right)} \right]b} & {2\left[ { - \beta^{2} + \frac{1}{5}\left( {1 + 4\nu } \right)} \right]a} \\ {2\left[ {2\alpha^{2} + \frac{1}{5}\left( {1 - \nu } \right)} \right]b} & {4\left[ {\frac{2}{3}\alpha^{2} - \frac{1}{15}\left( {1 - \nu } \right)} \right]b^{2} } & 0 \\ {2\left[ { - \beta^{2} + \frac{1}{5}\left( {1 + 4\nu } \right)} \right]a} & 0 & {4\left[ {\frac{2}{3}\beta^{2} - \frac{4}{15}\left( {1 - \nu } \right)} \right]a^{2} } \\ \end{array} } \right] $$
(22)

where \(\alpha = a/b\) and \(\beta = b/a\).

$$ \begin{array}{*{20}c} {{\mathbf{k}}_{22} = {\mathbf{I}}_{3}^{T} {\mathbf{k}}_{11} {\mathbf{I}}_{3} ;} & {} & {} \\ {{\mathbf{k}}_{32} = {\mathbf{I}}_{3}^{T} {\mathbf{k}}_{41} {\mathbf{I}}_{3} ;} & {{\mathbf{k}}_{33} = {\mathbf{I}}_{1}^{T} {\mathbf{k}}_{11} {\mathbf{I}}_{1} ;} & {} \\ {{\mathbf{k}}_{42} = {\mathbf{I}}_{3}^{T} {\mathbf{k}}_{31} {\mathbf{I}}_{3} ;} & {{\mathbf{k}}_{43} = {\mathbf{I}}_{1}^{T} {\mathbf{k}}_{21} {\mathbf{I}}_{1} ;} & {{\mathbf{k}}_{44} = {\mathbf{I}}_{2}^{T} {\mathbf{k}}_{11} {\mathbf{I}}_{2} ;} \\ \end{array} $$
(23)

where \({\mathbf{I}}_{1} = \left[ {\begin{array}{*{20}c} { - 1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\), \({\mathbf{I}}_{2} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & { - 1} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\) and \({\mathbf{I}}_{3} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & { - 1} \\ \end{array} } \right]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, M.R., Fabro, A.T. & Lenzi, A. Broadband vibration attenuation from a one-dimensional acoustic black hole resonator for plate-on-plate structures. J Braz. Soc. Mech. Sci. Eng. 43, 442 (2021). https://doi.org/10.1007/s40430-021-03162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03162-7

Keywords

Navigation