Skip to main content

Advertisement

Log in

A review of dual-fuel combustion mode in spark-ignition engines

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The growing pressure to comply with environmental agreements that establish strict limits concerning pollutant emissions in the atmosphere has been stimulating a prominent technological development in the area of ​​internal combustion engines. Recently, advanced combustion modes and the expanding adoption of biofuels are among the most explored aspects to minimize the environmental impact of modern propulsion systems. The dual-fuel combustion mode is a well-known strategy that has been studied since the early 1900s as an effective means for improving the fuel conversion efficiency of compression ignition engines. In recent years, this approach has been extended to spark-ignition engines and has shown promising results related to the combination of fuels normally used in the Otto cycle, with reduced fuel consumption, lower exhaust gaseous emissions and performance improvements. In this sense, the purpose of this article is to provide a concise review of the main state-of-art literature research covering the dual-fuel mode in spark-ignition engines, with special attention to the use of renewable and alternative options to reduce the impact of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BDI:

N-butanol direct-injection

BSFC:

Brake specific fuel consumption

CFD:

Computational fluid dynamics

CH4 :

MethaneCNG: Compressed natural gas

CO:

Carbon monoxide

CO2 :

Carbon dioxide

COV:

Coefficient of variation

CR:

Compression ratio

DFSI:

Dual-fuel spark-ignition

E10:

Ethanol-gasoline mixture (10% ethanol content)

E27:

Ethanol-gasoline mixture (27% ethanol content)

E30:

Ethanol-gasoline mixture (30% ethanol content)

E85:

Ethanol-gasoline mixture (85% ethanol content)

E100:

Ethanol

EDI:

Ethanol direct-injection

EGR:

Exhaust gas recirculation

GHG:

Greenhouse gas

GPFI:

Gasoline port-fuel injection

GPI:

Gasoline port-injection

H2 :

Hydrogen

HC:

Unburned hydrocarbons

ICE:

Internal combustion engine

IMEP:

Indicated mean effective pressure

ISEC:

Indicated specific energy consumption

LPG:

Liquefied petroleum gas

MBF50:

50% Mass burned fraction

MBT:

Maximum brake torque

NG:

Natural gas

NOX :

Nitrous oxides

PFI:

Port-fuel injection

PMEP:

Pumping mean effective pressure

PN:

Particle number

R&D:

Research and development

ROC:

Research octane number

SI:

Spark-ignition

TDC:

Top dead center

λ:

Lambda factor

References

  1. García A, Monsalve-Serrano J, Lago Sari R, Gaillard P (2020) Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: performance and emissions analysis. Appl. Energy. 279:115729. https://doi.org/10.1016/j.apenergy.2020.115729

    Article  Google Scholar 

  2. Ehsani M, Ahmadi A, Fadai D (2016) Modeling of vehicle fuel consumption and carbon dioxide emission in road transport. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.08.062

    Article  Google Scholar 

  3. Reitz RD, Ogawa H, Payri R, Fansler T, Kokjohn S, Moriyoshi Y, Agarwal AK, Arcoumanis D, Assanis D, Bae C, Boulouchos K, Canakci M, Curran S, Denbratt I, Gavaises M, Guenthner M, Hasse C, Huang Z, Ishiyama T, Johansson B, Johnson TV, Kalghatgi G, Koike M, Kong SC, Leipertz A, Miles P, Novella R, Onorati A, Richter M, Shuai S, Siebers D, Su W, Trujillo M, Uchida N, Vaglieco BM, Wagner RM, Zhao H (2020) IJER editorial: the future of the internal combustion engine. Int J Engine Res. https://doi.org/10.1177/1468087419877990

    Article  Google Scholar 

  4. Serrano JR (2017) Imagining the future of the internal combustion engine for ground transport in the current context. Appl Sci. https://doi.org/10.3390/app7101001

    Article  Google Scholar 

  5. Leach F, Kalghatgi G, Stone R, Miles P (2020) The scope for improving the efficiency and environmental impact of internal combustion engines. Transp Eng 1:100005. https://doi.org/10.1016/j.treng.2020.100005

    Article  Google Scholar 

  6. Kalghatgi G (2019) Development of fuel/engine systems—the way forward to sustainable transport. Engineering. https://doi.org/10.1016/j.eng.2019.01.009

    Article  Google Scholar 

  7. Senecal PK, Leach F (2019) Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results Eng. https://doi.org/10.1016/j.rineng.2019.100060

    Article  Google Scholar 

  8. Kalghatgi G (2018) Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy. 225:965–974. https://doi.org/10.1016/j.apenergy.2018.05.076

    Article  Google Scholar 

  9. Ning L, Duan Q, Chen Z, Kou H, Liu B, Yang B, Zeng K (2020) A comparative study on the combustion and emissions of a non-road common rail diesel engine fueled with primary alcohol fuels (methanol, ethanol, and n-butanol)/diesel dual fuel. Fuel. https://doi.org/10.1016/j.fuel.2020.117034

    Article  Google Scholar 

  10. García A, Monsalve-Serrano J, Villalta D, Guzmán-Mendoza M (2020) Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combustion. Fuel. https://doi.org/10.1016/j.fuel.2020.119548

    Article  Google Scholar 

  11. Abedin MJ, Imran A, Masjuki HH, Kalam MA, Shahir SA, Varman M, Ruhul AM (2016) An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.01.118

    Article  Google Scholar 

  12. Hegab A, La Rocca A, Shayler P (2017) Towards keeping diesel fuel supply and demand in balance: dual-fuelling of diesel engines with natural gas. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.11.249

    Article  Google Scholar 

  13. GA Karim (2015) Dual-fuel diesel engines. CRC Press https://doi.org/10.1201/b18163

  14. Boyer RL (1949) Status of dual fuel engine development. SAE Tech Pap. https://doi.org/10.4271/490018

    Article  Google Scholar 

  15. M.i Alex Vailatt, C Roberto Altafini, G DambrosTelli, J Souza Rosa, (2017) Experimental analysis of a small generator set operating on dual fuel diesel-ethanol. Sci. Cum Ind. 5(1):1–9. https://doi.org/10.18226/23185279.v5iss1p1

    Article  Google Scholar 

  16. Benajes J, García A, Monsalve-Serrano J, Martínez-Boggio S (2020) Potential of using OMEx as substitute of diesel in the dual-fuel combustion mode to reduce the global CO2 emissions. Transp Eng. https://doi.org/10.1016/j.treng.2020.01.001

    Article  Google Scholar 

  17. Mrzljak V, Poljak I, Medica-Viola V (2017) Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2017.03.078

    Article  Google Scholar 

  18. Yuvenda D, Sudarmanta B, Wahjudi A, Muraza O (2020) Improved combustion performances and lowered emissions of CNG-diesel dual fuel engine under low load by optimizing CNG injection parameters. Fuel. https://doi.org/10.1016/j.fuel.2020.117202

    Article  Google Scholar 

  19. Ramos Da Costa YJ, Barbosa De Lima AG, BezerraFilho CR, De Araujo Lima L (2012) Energetic and exergetic analyses of a dual-fuel diesel engine. Renew. Sustain. Energy Rev. 16(7):4651–4660. https://doi.org/10.1016/j.rser.2012.04.013

    Article  Google Scholar 

  20. García A, Gil A, Monsalve-Serrano J, Lago Sari R (2020) OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy. Fuel. 275:117898. https://doi.org/10.1016/j.fuel.2020.117898

    Article  Google Scholar 

  21. Deheri C, Acharya SK, Thatoi DN, Mohanty AP (2020) A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel. https://doi.org/10.1016/j.fuel.2019.116337

    Article  Google Scholar 

  22. Pedrozo VB, May I, Guan W, Zhao H (2018) High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load. Fuel. https://doi.org/10.1016/j.fuel.2018.05.034

    Article  Google Scholar 

  23. Chen Z, Wang L, Zeng K (2019) A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.04.011

    Article  Google Scholar 

  24. da Costa RBR, Hernández JJ, Teixeira AF, Netto NAD, Valle RM, Roso VR, Coronado CJR (2019) Combustion, performance and emission analysis of a natural gas-hydrous ethanol dual-fuel spark ignition engine with internal exhaust gas recirculation. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.05.094

    Article  Google Scholar 

  25. Akal D, Öztuna S, Büyükakın MK (2020) A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.02.001

    Article  Google Scholar 

  26. Qian Y, Sun S, Ju D, Shan X, Lu X (2017) Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.11.059

    Article  Google Scholar 

  27. De Melo TCC, MacHado GB, Belchior CRP, Colaço MJ, Barros JEM, De Oliveira EJ, De Oliveira DG (2012) Hydrous ethanol-gasoline blends - Combustion and emission investigations on a flex-fuel engine. Fuel. https://doi.org/10.1016/j.fuel.2012.03.018

    Article  Google Scholar 

  28. Santos NDSA, Alvarez CEC, Roso VR, Baeta JGC, Valle RM (2019) Combustion analysis of a SI engine with stratified and homogeneous pre-chamber ignition system using ethanol and hydrogen. Appl Therm Eng 160:113985. https://doi.org/10.1016/J.APPLTHERMALENG.2019.113985

    Article  Google Scholar 

  29. da Costa RBR, Valle RM, Hernández JJ, Malaquias ACT, Coronado CJR, Pujatti FJP (2020) Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: combustion, performance and pollutant emission analysis. Appl Energy 261:114438. https://doi.org/10.1016/j.apenergy.2019.114438

    Article  Google Scholar 

  30. Wu B, Wang L, Shen X, Yan R, Dong P (2016) Comparison of lean burn characteristics of an SI engine fueled with methanol and gasoline under idle condition. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2015.11.029

    Article  Google Scholar 

  31. Bhasker JP, Porpatham E (2017) Effects of compression ratio and hydrogen addition on lean combustion characteristics and emission formation in a compressed natural gas fuelled spark ignition engine. Fuel 208:260–270. https://doi.org/10.1016/j.fuel.2017.07.024

    Article  Google Scholar 

  32. Verhelst S, Turner JW, Sileghem L, Vancoillie J (2019) Methanol as a fuel for internal combustion engines. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2018.10.001

    Article  Google Scholar 

  33. Olabi AG, Wilberforce T, Abdelkareem MA (2021) Fuel cell application in the automotive industry and future perspective. Energy. 214:118955. https://doi.org/10.1016/j.energy.2020.118955

    Article  Google Scholar 

  34. Yu X, Li D, Yang S, Sun P, Guo Z, Yang H, Li Y, Wang T (2020) Effects of hydrogen direct injection on combustion and emission characteristics of a hydrogen/Acetone-Butanol-Ethanol dual-fuel spark ignition engine under lean-burn conditions. Int. J. Hydrogen Energy. 45(58):34193–34203. https://doi.org/10.1016/j.ijhydene.2020.09.080

    Article  Google Scholar 

  35. Niu R, Yu X, Du Y, Xie H, Wu H, Sun Y (2016) Effect of hydrogen proportion on lean burn performance of a dual fuel SI engine using hydrogen direct-injection. Fuel. https://doi.org/10.1016/j.fuel.2016.09.021

    Article  Google Scholar 

  36. Ji C, Shi C, Wang S, Yang J, Su T, Wang D (2019) Effect of dual-spark plug arrangements on ignition and combustion processes of a gasoline rotary engine with hydrogen direct-injection enrichment. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2018.11.078

    Article  Google Scholar 

  37. Yang J, Ji C, Wang S, Wang D, Ma Z, Zhang B (2018) Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.04.092

    Article  Google Scholar 

  38. Wu H, Yu X, Du Y, Ji X, Niu R, Sun Y, Gu J (2016) Study on cold start characteristics of dual fuel SI engine with hydrogen direct-injection. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.02.097

    Article  Google Scholar 

  39. Li G, Yu X, Shi W, Yao C, Wang S, Shen Q (2019) Effects of split injection proportion and the second injection timings on the combustion and emissions of a dual fuel SI engine with split hydrogen direct injection. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.02.222

    Article  Google Scholar 

  40. Manochio C, Andrade BR, Rodriguez RP, Moraes BS (2017) Ethanol from biomass: a comparative overview. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.05.063

    Article  Google Scholar 

  41. Yan F, Xu L, Wang Y (2018) Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.05.227

    Article  Google Scholar 

  42. Al-Baghdadi MARS (2002) A study on the hydrogen-ethyl alcohol dual fuel spark ignition engine. Energy Convers Manag. https://doi.org/10.1016/S0196-8904(01)00020-6

    Article  Google Scholar 

  43. Ayad SMME, Belchior CRP, da Silva GLR, Lucena RS, Carreira ES, de Miranda PEV (2020) Analysis of performance parameters of an ethanol fueled spark ignition engine operating with hydrogen enrichment. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.05.151

    Article  Google Scholar 

  44. Gong C, Li Z, Yi L, Liu F (2020) Experimental investigation of equivalence ratio effects on combustion and emissions characteristics of an H2/methanol dual-injection engine under different spark timings. Fuel 262:116463. https://doi.org/10.1016/J.FUEL.2019.116463

    Article  Google Scholar 

  45. Hu E, Huang Z, Liu B, Zheng J, Gu X, Huang B (2009) Experimental investigation on performance and emissions of a spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR. Int J Hydrogen Energy 34:528–539. https://doi.org/10.1016/j.ijhydene.2008.10.042

    Article  Google Scholar 

  46. Hu E, Huang Z, Liu B, Zheng J, Gu X (2009) Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas-hydrogen blends combining with EGR. Int J Hydrogen Energy 34:1035–1044. https://doi.org/10.1016/j.ijhydene.2008.11.030

    Article  Google Scholar 

  47. Wu X, Daniel R, Tian G, Xu H, Huang Z, Richardson D (2011) Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends. Appl Energy. https://doi.org/10.1016/j.apenergy.2011.01.025

    Article  Google Scholar 

  48. de Carvalho MAS, Achy ARA, Junior LCSS, Ferreira VP, da Silva JAM, Pepe IM, Torres EA (2020) Mechanical and emissions performance of a diesel engine fueled with biodiesel, ethanol and diethyl ether blends. J. Brazilian Soc. Mech. Sci. Eng. 42(4):1–10. https://doi.org/10.1007/s40430-020-2269-7

    Article  Google Scholar 

  49. Silva TRV, Baeta JGC, Neto NAD, Malaquias ACT, Carvalho MGF, Filho FR (2018) Split-injection in a downsized ethanol SIDI engine aiming to mitigate pre-ignition. SAE Tech Pap Ser. https://doi.org/10.4271/2017-36-0266

    Article  Google Scholar 

  50. Malaquias ACT, Netto NAD, da Costa RBR, Baêta JGC (2020) Combined effects of internal exhaust gas recirculation and tumble motion generation in a flex-fuel direct injection engine. Energy Convers Manag 217:113007. https://doi.org/10.1016/j.enconman.2020.113007

    Article  Google Scholar 

  51. Claros Garcia JC, Von Sperling E (2017) Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil. Renew. Sustain. Energy Rev. 72:1033–1049. https://doi.org/10.1016/j.rser.2017.01.046

    Article  Google Scholar 

  52. Thakur AK, Kaviti AK, Mehra R, Mer KKS (2017) Progress in performance analysis of ethanol-gasoline blends on SI engine. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.11.056

    Article  Google Scholar 

  53. da Costa RBR, Rodrigues Filho FA, Coronado CJR, Teixeira AF, Netto NAD (2018) Research on hydrous ethanol stratified lean burn combustion in a DI spark-ignition engine. Appl. Therm. Eng. 139:317–324. https://doi.org/10.1016/j.applthermaleng.2018.05.004

    Article  Google Scholar 

  54. da Costa RBR, Rodrigues Filho FA, Moreira TAA, Baêta JGC, Guzzo ME, de Souza JLF (2020) Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend. Energy. 197:117300. https://doi.org/10.1016/j.energy.2020.117300

    Article  Google Scholar 

  55. Malaquias ACT, Netto NAD, da Costa RBR, Teixeira AF, Costa SAP, Baêta JGC (2020) An evaluation of combustion aspects with different compression ratios, fuel types and injection systems in a single-cylinder research engine. J Brazilian Soc Mech Sci Eng 42:497. https://doi.org/10.1007/s40430-020-02575-0

    Article  Google Scholar 

  56. Roso VR, Santos NDSA, Alvarez CEC, Rodrigues Filho FA, Pujatti FJP, Valle RM (2019) Effects of mixture enleanment in combustion and emission parameters using a flex-fuel engine with ethanol and gasoline. Appl. Therm. Eng. 153:463–472. https://doi.org/10.1016/J.APPLTHERMALENG.2019.03.012

    Article  Google Scholar 

  57. Mittal M, Zhu G, Schock HJ, Stuecken T, Hung DLS (2009) Burn rate analysis of an ethanol-gasoline, dual fueled, spark ignition engine. ASME Int Mech. Eng. Congr. Expo. Proc. 48647:3–11. https://doi.org/10.1115/IMECE2008-66139

    Article  Google Scholar 

  58. T.R.V. Silva, J.G.C. Baeta, N.A.D. Neto, A.C.T. Malaquias, M.G.F. Carvalho, F.R. Filho, (2017) The use of split-injection technique and ethanol lean combustion on a SIDI engine operation for reducing the fuel consumption and pollutant emissions, SAE Tech. Pap. 2017-Novem. doi:https://doi.org/10.4271/2017-36-0259.

  59. Borsari V, Neto EE, Ferreira VR, Berber EB (2021) Particulate matter emission from light duty passenger vehicles. SAE Tech Pap. https://doi.org/10.4271/2020-36-0021

    Article  Google Scholar 

  60. Catapano F, Di Iorio S, Luise L, Sementa P, Vaglieco BM (2019) Influence of ethanol blended and dual fueled with gasoline on soot formation and particulate matter emissions in a small displacement spark ignition engine. Fuel. https://doi.org/10.1016/j.fuel.2019.01.173

    Article  Google Scholar 

  61. Puškár M, Kopas M (2018) System based on thermal control of the HCCI technology developed for reduction of the vehicle NOX emissions in order to fulfil the future standard Euro 7. Sci. Total Environ. 643:674–680. https://doi.org/10.1016/j.scitotenv.2018.06.082

    Article  Google Scholar 

  62. Huang Y, Hong G, Huang R (2015) Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2014.12.064

    Article  Google Scholar 

  63. Qian Y, Liu G, Guo J, Zhang Y, Zhu L, Lu X (2019) Engine performance and octane on demand studies of a dual fuel spark ignition engine with ethanol/gasoline surrogates as fuel. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.01.011

    Article  Google Scholar 

  64. Liu H, Wang Z, Wang J (2014) Methanol-gasoline DFSI (dual-fuel spark ignition) combustion with dual-injection for engine knock suppression. Energy 73:686–693. https://doi.org/10.1016/j.energy.2014.06.072

    Article  Google Scholar 

  65. Liu H, Wang Z, Long Y, Wang J (2015) Dual-fuel spark ignition (DFSI) combustion fuelled with different alcohols and gasoline for fuel efficiency. Fuel 157:255–260. https://doi.org/10.1016/j.fuel.2015.04.042

    Article  Google Scholar 

  66. Liu H, Wang Z, Long Y, Xiang S, Wang J, Wagnon SW (2015) Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement. Energy. https://doi.org/10.1016/j.energy.2015.06.051

    Article  Google Scholar 

  67. Liu H, Wang Z, Long Y, Xiang S, Wang J, Fatouraie M (2015) Comparative study on alcohol-gasoline and gasoline-alcohol dual-fuel spark ignition (DFSI) combustion for engine particle number (PN) reduction. Fuel. https://doi.org/10.1016/j.fuel.2015.06.059

    Article  Google Scholar 

  68. Feng D, Wei H, Pan M, Zhou L, Hua J (2018) Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine. Energy 160:573–581. https://doi.org/10.1016/j.energy.2018.07.042

    Article  Google Scholar 

  69. Singh E, Morganti K, Dibble R (2019) Dual-fuel operation of gasoline and natural gas in a turbocharged engine. Fuel. https://doi.org/10.1016/j.fuel.2018.09.158

    Article  Google Scholar 

  70. Rodrigues Teixeira AC, Machado PG, Borges RR, Felipe Brito TL, Moutinho dos Santos E, Mouette D (2021) The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver’s point of view. Energy Policy. 149:112106. https://doi.org/10.1016/j.enpol.2020.112106

    Article  Google Scholar 

  71. Dong K, Jiang Q, Shahbaz M, Zhao J (2021) Does low-carbon energy transition mitigate energy poverty? the case of natural gas for China. Energy Econ. 99:105324. https://doi.org/10.1016/j.eneco.2021.105324

    Article  Google Scholar 

  72. H List (2016) Natural gas and renewable methane for powertrains. https://doi.org/10.1007/978-3-319-23225-6

  73. Khan MI, Yasmeen T, Shakoor A, Khan NB, Wakeel M, Chen B (2016) Exploring the potential of compressed natural gas as a viable fuel option to sustainable transport: A bibliography (2001–2015). J Nat Gas Sci Eng 31:351–381. https://doi.org/10.1016/j.jngse.2016.03.025

    Article  Google Scholar 

  74. Economides MJ, Wood DA (2009) The state of natural gas. J Nat Gas Sci Eng 1:1–13. https://doi.org/10.1016/j.jngse.2009.03.005

    Article  Google Scholar 

  75. Tahir MM, Ali MS, Salim MA, Bakar RA, Fudhail AM, Hassan MZ, Abdul Muhaimin MS (2015) Performance analysis of a spark ignition engine using compressed natural gas (CNG) as fuel. Energy Procedia. 68:355–362. https://doi.org/10.1016/j.egypro.2015.03.266

    Article  Google Scholar 

  76. Chen H, He J, Zhong X (2018) Engine combustion and emission fuelled with natural gas: a review. J Energy Inst 49:929–939. https://doi.org/10.1016/j.joei.2018.06.005

    Article  Google Scholar 

  77. Cho HM, He BQ (2007) Spark ignition natural gas engines-a review. Energy Convers Manag 48:608–618. https://doi.org/10.1016/j.enconman.2006.05.023

    Article  Google Scholar 

  78. Xu Y, Zhang Y, Gong J, Su S, Wei Z (2020) Combustion behaviours and emission characteristics of a retrofitted NG/gasoline duel-fuel SI engine with various proportions of NG-gasoline blends. Fuel. https://doi.org/10.1016/j.fuel.2019.116957

    Article  Google Scholar 

  79. Di Iorio S, Sementa P, Vaglieco BM (2013) Experimental investigation of a methane-gasoline dual-fuel combustion in a small displacement optical engine. SAE Tech Pap. https://doi.org/10.4271/2013-24-0046

    Article  Google Scholar 

  80. Ramasamy D, Goh CY, Kadirgama K, Benedict F, Noor MM, Najafi G, Carlucci AP (2017) Engine performance, exhaust emission and combustion analysis of a 4-stroke spark ignited engine using dual fuel injection. Fuel. https://doi.org/10.1016/j.fuel.2017.06.065

    Article  Google Scholar 

  81. Barros Zárante PH, Sodré JR (2009) Evaluating carbon emissions reduction by use of natural gas as engine fuel. J. Nat. Gas Sci. Eng. 1(6):216–220. https://doi.org/10.1016/j.jngse.2009.11.002

    Article  Google Scholar 

  82. Raslavičius L, Keršys A, Mockus S, Keršiene N, Starevičius M (2014) Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2014.01.052

    Article  Google Scholar 

  83. Adam TW, Astorga C, Clairotte M, Duane M, Elsasser M, Krasenbrink A, Larsen BR, Manfredi U, Martini G, Montero L, Sklorz M, Zimmermann R, Perujo A (2011) Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2011.03.002

    Article  Google Scholar 

  84. Gumus M (2011) Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2011.05.001

    Article  Google Scholar 

  85. Sameeroddin M, Deshmukh MKG, Viswa G, Sattar MA (2021) Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.01.746

    Article  Google Scholar 

  86. Spagnolo S, Chinellato G, Cristiano S, Zucaro A, Gonella F (2020) Sustainability assessment of bioenergy at different scales: an emergy analysis of biogas power production. J. Clean. Prod. 277:124038. https://doi.org/10.1016/j.jclepro.2020.124038

    Article  Google Scholar 

  87. da Costa RBR, Teixeira AF, Rodrigues Filho FA, Pujatti FJP, Coronado CJR, Hernández JJ, Lora EES (2019) Development of a homogeneous charge pre-chamber torch ignition system for an SI engine fuelled with hydrous ethanol. Appl. Therm. Eng. 152:261–274. https://doi.org/10.1016/j.applthermaleng.2019.02.090

    Article  Google Scholar 

  88. Stamenković OS, Siliveru K, Veljković VB, Banković-Ilić IB, Tasić MB, Ciampitti IA, Đalović IG, Mitrović PM, Sikora V, Prasad PVV (2020) Production of biofuels from sorghum. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.109769

    Article  Google Scholar 

  89. García A, Monsalve-Serrano J, Martínez-Boggio S, RückertRoso V, N. Duarte Souza Alvarenga Santos, (2020) Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles. Renew. Energy. 150:58–77. https://doi.org/10.1016/j.renene.2019.12.102

    Article  Google Scholar 

  90. N. Duarte Souza Alvarenga Santos, V. RückertRoso, A.C. TeixeiraMalaquias, J.G. Coelho Baêta, (2021) Internal combustion engines and biofuels: examining why this robust combination should not be ignored for future sustainable transportation. Renew. Sustain. Energy Rev. 148:111292. https://doi.org/10.1016/j.rser.2021.111292

    Article  Google Scholar 

  91. Da Costa RBR, Gomes CA, Franco RL, Guzzo ME, Pujatti FJP (2015) E100 stratified lean combustion analysis in a wall-air guided type GDI optical engine. SAE Tech Pap. https://doi.org/10.4271/2015-36-0269

    Article  Google Scholar 

  92. Sarker SA, Wang S, Adnan KMM, Sattar MN (2020) Economic feasibility and determinants of biogas technology adoption: evidence from Bangladesh. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.109766

    Article  Google Scholar 

  93. Feiz R, Johansson M, Lindkvist E, Moestedt J, Påledal SN, Svensson N (2020) Key performance indicators for biogas production—methodological insights on the life-cycle analysis of biogas production from source-separated food waste. Energy. https://doi.org/10.1016/j.energy.2020.117462

    Article  Google Scholar 

  94. Chen Z, Wang L, Yuan X, Duan Q, Yang B, Zeng K (2019) Experimental investigation on performance and combustion characteristics of spark-ignition dual-fuel engine fueled with methanol/natural gas. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.12.168

    Article  Google Scholar 

  95. Wang L, Chen Z, Zhang T, Zeng K (2019) Effect of excess air/fuel ratio and methanol addition on the performance, emissions, and combustion characteristics of a natural gas/methanol dual-fuel engine. Fuel. https://doi.org/10.1016/j.fuel.2019.115799

    Article  Google Scholar 

  96. Chen Z, Wang L, Zhang Q, Zhang X, Yang B, Zeng K (2019) Effects of spark timing and methanol addition on combustion characteristics and emissions of dual-fuel engine fuelled with natural gas and methanol under lean-burn condition. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2018.12.040

    Article  Google Scholar 

  97. Gong C, Liu Z, Su H, Chen Y, Li J, Liu F (2019) Effect of injection strategy on cold start firing, combustion and emissions of a LPG/methanol dual-fuel spark-ignition engine. Energy. https://doi.org/10.1016/j.energy.2019.04.145

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the CTM-UFMG (Centro de Tecnologia da Mobilidade), the LMT-UNIFEI (Laboratório de Máquinas Térmicas) and Fundação de Desenvolvimento da Pesquisa – Fundep Rota 2030/Linha V (Proc. Nº 27192*5) for encouraging research regarding more sustainable internal combustion engines and the use of renewable fuels for future propulsion systems.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto César Teixeira Malaquias.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaquias, A.C.T., da Costa, R.B.R., Netto, N.A.D. et al. A review of dual-fuel combustion mode in spark-ignition engines. J Braz. Soc. Mech. Sci. Eng. 43, 426 (2021). https://doi.org/10.1007/s40430-021-03156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03156-5

Keywords

Navigation