Skip to main content
Log in

Aerodynamic improved design and optimization for the rear stage of a High-load axial compressor

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes and discusses the aerodynamic retrofit design schemes for a multistage high pressure axial compressor. A high hub/tip ratio mixed-flow compressor is designed and analyzed to replace the rear stage of the axial compressor. In order to minimize the axial dimension and maximize the load capacity, three unconventional types of combined compressors equipped with the high hub/tip ratio mixed-flow compressor are explored. Further, the effects of blade number, splitter blades and dimensionless geometric parameters on the mixed-flow compressor performance are investigated by an improved loss model. A full-surface parameterization control method is introduced and adopted for blade optimizations of the mixed-flow impeller and the tandem stator. The results indicate that after aerodynamic improved design and optimization, the total pressure ratio is relatively improved by 3.71% and the adiabatic efficiency is improved by 0.95 percent point for the mixed-flow compressor at the near design point. Based on this, the retrofit schemes for the axial compressor are beneficial to improve the load capacity and reduce the axial dimension with a slight impact on efficiency and surge margin. These show the potential application prospects of high hub/tip ratio mixed-flow compressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio

HR:

Hub/tip ratio

LE:

Leading edge

Opt:

Optimal

Ori:

Original

PS:

Pressure side

SS:

Suction side

TE:

Trailing edge

References

  1. Cai X, Huang S, Tang F (2012) The design of High-loading Mixed-flow compressor. Enterp Sci Technol Dev 12:17–20

    Google Scholar 

  2. Lu X, Zhu J, Zhao S (2015) The ultra-compact high pressure mixed flow ratio—a combination of centrifugal compressor structure. CHINA Patent, CN102678590 B. 2015-08-12

  3. Youssef N, Weir G (2002) Mixed flow and centrifugal compressor for gas turbine engine. USA Patent, US6488469. 2002-12-03

  4. Zhang XY, Chen XY, Li LC et al (2018) Aerodynamic design and numerical simulation of mixed-axial flow multi-stage compressor. Chin J Ship Res 13(4):104–110

    Article  Google Scholar 

  5. Xuanyu C, Xiangwei M, Xingmin G et al (2015) The aerodynamic design and investigation of loading distribution of a mixed flow compressor. Procedia Eng 99:484–490

    Article  Google Scholar 

  6. Groh FG, Wood GM, Kulp RS et al (1970) Evaluation of a high Hub/tip ratio centrifugal compressor. J Fluid Eng 92:419–428

    Google Scholar 

  7. Rodgers C, Brown D (2009) High Hub/Tip ratio centrifugal compressors. In: Proceedings of the ASME turbo expo 2009: power for land, sea, and air, vol 7. ASME, Turbomachinery, Parts A and B, Orlando, Florida, USA, pp 1151–1161. https://doi.org/10.1115/GT2009-59012

    Chapter  Google Scholar 

  8. Sun X (1982) (1982) Design of high inlet Hub/tip ratio centrifugal compressor. Turbine Technol 2:42–50

    Google Scholar 

  9. Long S, Wang Y (2011) Redesign and analysis of a high Hub/tip ratio centrifugal compressor. Fluid Mach 39(11):58–61

    Google Scholar 

  10. Musgrave DS, Plehn NJ (1987) Mixed-flow compressor stage design and test results with a pressure ratio of 3: 1. J Turbomach 109:513–519

    Article  Google Scholar 

  11. Jian H, Zhenxia L, Zhong R et al (2011) Exploring numerically overall performance and flow field of mixed flow compressor stage with splitter blades. J Northwestern Polytech Univ 2:26

    Google Scholar 

  12. Liu Q, Yu Y (2013) Numerical analysis of mixed compressor tip clearance. J Propul Technol 34(2):168–172

    Google Scholar 

  13. Hall DK, Greitzer EM, Tan CS (2012) Performance limits of axial compressor stages. In: Proceedings of the ASME turbo expo 2012: turbine technical conference and exposition, vol 8. ASME, Turbomachinery, Parts A, B, and C, Copenhagen, Denmark, pp 479–489. https://doi.org/10.1115/GT2012-69709

    Chapter  Google Scholar 

  14. Casey M, Zwyssig C, Robinson C (2010) The cordier line for mixed flow compressors. In: Proceedings of the ASME turbo expo 2010: power for land, sea, and air, vol 7. ASME, Turbomachinery, Parts A, B, and C, Glasgow, UK, pp 1859–1869. https://doi.org/10.1115/GT2010-22549

    Chapter  Google Scholar 

  15. Xiang H, Chen J, Cheng J (2018) Optimum blade number and splitter blade length of a Mixed-flow impeller based on mean streamline loss model. 2018 joint propulsion conference. Cincinnati, AIAA 2018-4827. https://doi.org/10.2514/6.2018-4827

  16. Aungier RH (1995) Mean streamline aerodynamic performance analysis of centrifugal compressors. J Turbomach 117(3):360–366

    Article  Google Scholar 

  17. Zhu M, Qiang X, Huang T et al (2013) Investigation of tip leakage flow and stage matching with casing treatment in a transonic mixed-flow compressor. Int J Turbo Jet Eng 30(3):283–292

    Google Scholar 

  18. Diener OH, van der Spuy SJ, von Backström TW et al (2016) Multi-disciplinary optimization of a mixed-flow compressor impeller. In: Proceedings of the ASME turbo expo 2016: turbomachinery technical conference and exposition, vol 8. ASME, Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Seoul, South Korea. https://doi.org/10.1115/GT2016-57008

    Chapter  Google Scholar 

  19. Whitfield A, Roberts DV (1981) The effect of impeller tip design on the performance of a mixed flow turbocharger compressor. In: Proceedings of the ASME 1981 international gas turbine conference and products show, vol 1. ASME, Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery, Houston, Texas, USA. https://doi.org/10.1115/81-GT-7

    Chapter  Google Scholar 

  20. Wang SJ, Yuan MJ, Xi G et al (1992) Development and industrial application of the “All-over-controlled vortex distribution method” for designing radial and mixed flow impellers. In: Proceedings of the ASME 1992 international gas turbine and aeroengine congress and exposition, vol 1. ASME, Turbomachinery. Cologne, Germany. https://doi.org/10.1115/92-GT-262

    Chapter  Google Scholar 

  21. Burguburu S, le Pape A (2003) Improved aerodynamic design of turbomachinery bladings by numerical optimization. Aerosp Sci Technol 7(4):277–287

    Article  Google Scholar 

  22. Cheng J, Chen J, Xiang H (2019) A surface parametric control and global optimization method for axial flow compressor blades. Chin J Aeronaut 32(7):1618–1634

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Science and Technology Major Project (2017-II-0006-0019) and Civil Aircraft Special Project Research of China (MJZ-2017-D-30).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Chen or Jinxin Cheng.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix: Springer-Author Discount

List of symbols

b :

Append Hub-to-shroud passage width

D :

Diameter

f :

Optimized objective function

h :

Blade height

\(L\) :

Blade length

Lc :

Blade chord length

\(\dot{m}{ }\) :

Mass flow

\(P^{*}\) :

Total pressure

Q :

Volume flow

\(R_{n}\) :

Design rotate speed

\(R_{n}\) :

Design rotate speed

$$\overline{R}{ }\left( {{\text{r}}_{1} + {\text{r}}_{2} } \right)/\left( {{\text{r}}_{2} - {\text{r}}_{1} } \right)$$
r :

Radius

s :

Pitch

\(T^{*}\) :

Total temperature

U :

Blade tangential velocity

U :

Blade tangential velocity

Z :

Main blade number

\(\beta\) :

Blade angle with respect to tangent

\(\gamma\) :

Meridional streamline slope angle

\(\Delta H\) :

Total enthalpy increase

\(\delta\) :

Tip clearance

\(\zeta\) :

Dimensionless splitter blade length

\(\eta\) :

Adiabatic efficiency, vertical coordinate

\(\eta\) :

Adiabatic efficiency, vertical coordinate

\(\xi\) :

Horizontal coordinate

\({\uppi }_{{\text{r}}}^{*}\) :

Total pressure ratio

\(\tau\) :

Solidity

\(\Psi\) :

Loading coefficient

\(\phi\) :

Flow coefficient

\(\omega\) :

Weight coefficient

Subscripts

B :

Principal blade parameter

h :

Hub

m :

Meridional, mean

nd :

Near design point

ns :

Near stall point

ori :

Original parameters (before optimization)

out :

Outlet

s :

Splitter blade (inlet)

t :

Tip

z :

Axial

1 :

Inlet

2 :

Outlet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Chen, J., Cheng, J. et al. Aerodynamic improved design and optimization for the rear stage of a High-load axial compressor. J Braz. Soc. Mech. Sci. Eng. 43, 160 (2021). https://doi.org/10.1007/s40430-021-02848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02848-2

Keywords

Navigation