Skip to main content
Log in

Kriging-based multiobjective optimization using sequential reduction of the entropy of the predicted Pareto front

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel Kriging-based algorithm for multiobjective optimization of expensive-to-evaluate black-box functions is proposed. The algorithm is based on sequential reduction of the entropy of the predicted Pareto front. The associated infill criterion selects a candidate design with the highest informational entropy among a set of predicted Pareto designs. The algorithm is tested on three engineering benchmark problems: the Nowacki cantilever beam, a car-side impact problem and a water management problem. The algorithm is also used to find the Pareto front for a snap-fit design. In the benchmark problems, the proposed algorithm outperformed traditional ones (parEGO and EHVI) when three different performance indicators were considered. The results also suggest that the algorithm is robust and produces a wide, representative Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ANSYS (2015) ANSYS Mechanical User’s Guide. Canonsburg, United States of America

    Google Scholar 

  2. Auger A, Bader J, Brockhoff D, Zitzler E (2009) Theory of the hypervolume indicator: optimal \(\upmu \)-distributions and the choice of the reference point. In: Proceedings of the tenth ACM SIGEVO workshop on foundations of genetic algorithms. ACM, pp 87–102

  3. Bayer (2013) Snap-fit joints for plastics: a design guide. Pittsburgh, PA

  4. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    MATH  Google Scholar 

  5. Binois M, Picheny V (2016) GPareto: Gaussian processes for pareto front estimation and optimization. http://CRAN.R-project.org/package=GPareto, r package version 1.0.2

  6. Bora TC, Mariani VC, dos Santos Coelho L (2019) Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 146:688–700

    Google Scholar 

  7. Bouhlel MA, Bartoli N, Regis RG, Otsmane A, Morlier J (2018) Efficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares method. Eng Optim 50(12):2038–2053

    MathSciNet  Google Scholar 

  8. Carnell R (2012) LHS: Latin hypercube samples. http://CRAN.R-project.org/package=lhs, r package version 0.10

  9. Cohon JL, Marks DH (1975) A review and evaluation of multiobjective programing techniques. Water Resourc Res 11(2):208–220

    Google Scholar 

  10. Couckuyt I, Deschrijver D, Dhaene T (2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization. J Glob Optim 60(3):575–594

    MathSciNet  MATH  Google Scholar 

  11. Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, Berlin, pp 403–449

  12. Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Google Scholar 

  13. Deb K, Thiele L, Laumanns M, Zitzler E (2002b) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02. IEEE, vol 1, pp 825–830

  14. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization. Advanced information and knowledge processing, chap 6. Springer, London, pp 105–145

  15. Emmerich M, Deutz AH, Klinkenberg JW (2011) Hypervolume-based expected improvement: monotonicity properties and exact computation. In: 2011 IEEE congress of evolutionary computation (CEC). IEEE, pp 2147–2154

  16. Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Pondicherry

    Google Scholar 

  17. Garrido-Merchán EC, Hernández-Lobato D (2019) Predictive entropy search for multi-objective bayesian optimization with constraints. Neurocomputing

  18. Ginsbourger D, Picheny V, Roustant O, Wagner T (2013) DiceOptim: Kriging-based optimization for computer experiments. http://CRAN.R-project.org/package=DiceOptim, r package version 1.4

  19. Hernández-Lobato D, Hernandez-Lobato J, Shah A, Adams R (2016) Predictive entropy search for multi-objective bayesian optimization. In: International conference on machine learning, pp 1492–1501

  20. Hupkens I, Emmerich M, Deutz A (2014) Faster computation of expected hypervolume improvement. Technical report, LIACS

  21. Iman RL, Helton JC, Campbell JE (1981) An approach to sensitivity analysis of computer models: part i–introduction, input variable selection and preliminary variable assessment. J Quality Technol 13(3):174–183

    Google Scholar 

  22. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    MathSciNet  MATH  Google Scholar 

  23. Krieg D (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139

    Google Scholar 

  24. Martínez-Frutos J, Herrero-Pérez D (2016) Kriging-based infill sampling criterion for constraint handling in multi-objective optimization. J Glob Optim 64(1):97–115

    MathSciNet  MATH  Google Scholar 

  25. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  26. Mersmann O (2012) EMOA: evolutionary multiobjective optimization algorithms. http://CRAN.R-project.org/package=emoa, r package version 0.5-0

  27. Mersmann O (2014) MCO: multiple criteria optimization algorithms and related functions. http://CRAN.R-project.org/package=mco, r package version 1.0-15.1

  28. Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectrum 24(2):193–213

    MathSciNet  MATH  Google Scholar 

  29. Musselman K, Talavage J (1980) A tradeoff cut approach to multiple objective optimization. Oper Res 28(6):1424–1435

    MathSciNet  MATH  Google Scholar 

  30. Nowacki H (1980) Modelling of design decisions for cad. In: Computer aided design modelling, systems engineering, CAD-Systems. Springer, pp 177–223

  31. Parr J, Keane A, Forrester AI, Holden C (2012) Infill sampling criteria for surrogate-based optimization with constraint handling. Eng Optim 44(10):1147–1166

    MATH  Google Scholar 

  32. Passos AG (2016) MOKO: Multi-objective kriging optimization. https://CRAN.R-project.org/package=moko, r package version 1.0.0

  33. Passos AG, Luersen MA (2018a) Multi-objective optimization with kriging surrogates using “moko”, an open source package. Latin Am J Solids Struct 15(10)

  34. Passos AG, Luersen MA (2018b) Multiobjective optimization of laminated composite parts with curvilinear fibers using kriging-based approaches. Struct Multidiscipl Optim 57(3):1115–1127

    Google Scholar 

  35. Picheny V (2015) Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction. Statist Comput 25(6):1265–1280

    MathSciNet  MATH  Google Scholar 

  36. Ray T, Tai K, Seow KC (2001) Multiobjective design optimization by an evolutionary algorithm. Eng Optim 33(4):399–424

    Google Scholar 

  37. Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J Statist Softw 51(1):1–55

    Google Scholar 

  38. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    MathSciNet  MATH  Google Scholar 

  39. Scheuerer M, Schaback R, Schlather M (2013) Interpolation of spatial data—a stochastic or a deterministic problem? Eur J Appl Math 24(4):601–629

    MathSciNet  MATH  Google Scholar 

  40. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mobile Comput Commun Rev 5(1):3–55

    MathSciNet  Google Scholar 

  41. Shimoyama K, Jeong S, Obayashi S (2013) (2013) Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 658–665

  42. Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis. Technical report, Citeseer

    Google Scholar 

  43. Villemonteix J, Vazquez E, Walter E (2009) An informational approach to the global optimization of expensive-to-evaluate functions. J Glob Optim 44(4):509

    MathSciNet  MATH  Google Scholar 

  44. Wang Z, Jegelka S (2017) Max-value entropy search for efficient bayesian optimization. arXiv preprint arXiv:1703.01968

  45. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology Zurich

  46. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel problem solving from nature. Springer, pp 292–301

  47. Zitzler E, Laumanns M, Thiele L, Zitzler E, Zitzler E, Thiele L, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm. Technical report, TIK

    MATH  Google Scholar 

  48. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evolut Comput 7(2):117–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Passos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: José Roberto de França Arruda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passos, A.G., Luersen, M.A. Kriging-based multiobjective optimization using sequential reduction of the entropy of the predicted Pareto front. J Braz. Soc. Mech. Sci. Eng. 42, 550 (2020). https://doi.org/10.1007/s40430-020-02638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02638-2

Keywords

Navigation