Skip to main content
Log in

Machining of Inconel 718 with a defined geometry tool or by electrical discharge machining

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Inconel 718 alloy is the most used nickel-based superalloy owing to its characteristics of excellent mechanical and chemical properties at high temperatures and relatively low cost in comparison with other alloys. Nevertheless, the mechanical properties and components with intricate geometric shapes usually lead to difficulty in machining this alloy. This article reports a literature review on the machining performance of Inconel 718 alloy using conventional machining processes as well as electrical discharge machining. Based on the literature review, it is possible to highlight that for conventional machining, non-uniform flank wear and notch at the depth of cut are the leading causes for cutting tool failure when machining Inconel 718. Abrasion is the prominent wear mechanism, followed by diffusion, adhesion, and chipping. Regarding the assessed literature, 65 % used cemented carbide as cutting tool material, 20% used ceramic cutting tools, and 15% applied CBN tools. For ED-machining, copper is the most used material as a tool electrode, followed by brass and graphite. Regarding the electrical variables, discharge currents applied are from 10 to 20 A, and the pulse duration varies from 50 to 200 µs. The thickness of the white layer, varying from 3 to 50 μm, depends directly on the combination of process parameters, which involves the variation of discharge current and pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kliuev M, Boccadoro M, Perez R et al (2016) EDM drilling and shaping of cooling holes in Inconel 718 turbine blades. Procedia CIRP 42:322–327

    Google Scholar 

  2. Yilmaz O, Bozdana AT, Okka MA, Filiz IH (2010) An intelligent and automated system for EDM hole drilling of super alloys. In: 5th international conference on responsive manufacturing: green manufacturing (ICRM), pp 95–99

  3. Thellaputta GR, Chandra PS, Rao CSP (2017) Machinability of nickel based superalloys: a review. Mater Today Proc 4(2):3712–3721

    Google Scholar 

  4. Rahul Datta S, Biswal BB, Mahapatra SS (2017) A novel satisfaction function and distance-based approach for machining performance optimization during electro-discharge machining on super alloy Inconel 718. Arab J Sci Eng 42(5):1999–2020

    Google Scholar 

  5. Yilmaz O, Bozdana AT, Okka MA (2014) An intelligent and automated system for electrical discharge drilling of aerospace alloys: Inconel 718 and Ti-6Al-4V. Int J Adv Manuf Technol 74(9–12):1323–1336

    Google Scholar 

  6. Chlebus E, Gruber K, Kuźnicka B et al (2015) Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng, A 639:647–655

    Google Scholar 

  7. Sahu BK, Datta S, Mahapatra SS (2018) On electro-discharge machining of Inconel 718 super alloys: an experimental investigation. Mater Today Proc 5(2):4861–4869

    Google Scholar 

  8. Pusavec F, Deshpande A, Yang S et al (2014) Sustainable machining of high temperature nickel alloy—Inconel 718: part 1—predictive performance models. J Clean Prod 81:255–269

    Google Scholar 

  9. Shen Y, Liu Y, Dong H et al (2017) Surface integrity of Inconel 718 in high-speed electrical discharge machining milling using air dielectric. Int J Adv Manuf Technol 90(1–4):691–698

    Google Scholar 

  10. Chlebus E, Gruber K, Kuźnicka B et al (2018) Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng, A 639:647–655

    Google Scholar 

  11. Sahu SK, Jadam T, Datta S, Nandi G (2018) Effect of using SiC powder-added dielectric media during electro-discharge machining of Inconel 718 superalloys. J Braz Soc Mech Sci Eng 40:330

    Google Scholar 

  12. Bassoli E, Denti L, Gatto A, Iuliano L (2016) Influence of electrode size and geometry in electro-discharge drilling of Inconel 718. Int J Adv Manuf Technol 86(5–8):2329–2337

    Google Scholar 

  13. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54

    Google Scholar 

  14. Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177(1–3):469–472

    Google Scholar 

  15. Tayon WA, Shenoy RN, Redding MR et al (2014) Correlation between microstructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication. J Manuf Sci Eng 136(6):061005

    Google Scholar 

  16. Rahul Abhishek K, Datta S et al (2017) Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. J Braz Soc Mech Sci Eng 39(9):3499–3527

    Google Scholar 

  17. D’Addona DM, Raykar SJ, Narke MM (2017) High speed machining of Inconel 718: tool wear and surface roughness analysis. Procedia CIRP 62:269–274

    Google Scholar 

  18. Bozdana AT, Ulutas T (2016) The effectiveness of multichannel electrodes on drilling blind holes on Inconel 718 by EDM process. Mater Manuf Process 31(4):504–513

    Google Scholar 

  19. Ghosh S, Yadav S, Das G (2008) Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique. Mater Lett 62(17–18):2619–2622

    Google Scholar 

  20. Slama C, Abdellaoui M (2000) Structural characterization of the aged Inconel 718. J Alloys Compd 306(1–2):277–284

    Google Scholar 

  21. Li R, Yao M, Liu W, He X (2002) Isolation and determination for δ, γ′ and γ″ phases in Inconel 718 alloy. Scr Mater 46(9):635–638

    Google Scholar 

  22. Xue H, Lijun W, Hui X et al (2003) Superplastic properties of Inconel 718. J Mater Process Technol 137:17–20

    Google Scholar 

  23. Korovsky G, Cieslak M, Headley T et al (1989) Inconel 718: a solidification diagram. Metall Trans A 20A:2149–2158

    Google Scholar 

  24. Anderson M, Thielin AL, Bridier F et al (2017) δ Phase precipitation in Inconel 718 and associated mechanical properties. Mater Sci Eng, A 679:48–55

    Google Scholar 

  25. Li W, Guo YB, Barkey ME, Jordon JB (2014) Effect tool wear during end milling on the surface integrity and fatigue life of inconel 718. Procedia CIRP 14:546–551

    Google Scholar 

  26. Zetek M, Česáková I, Švarc V (2014) Increasing cutting tool life when machining inconel 718. Procedia Eng 69:1115–1124

    Google Scholar 

  27. Sharman ARC, Hughes JI, Ridgway K (2004) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414

    Google Scholar 

  28. Altin A, Nalbant M, Taskesen A (2007) The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Mater Des 28(9):2518–2522

    Google Scholar 

  29. Li L, Guo YB, Wei XT, Li W (2013) Surface integrity characteristics in wire-EDM of inconel 718 at different discharge energy. Procedia CIRP 6:220–225

    Google Scholar 

  30. Strondl A, Palm M, Gnauk J, Frommeyer G (2011) Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Mater Sci Technol 27(5):876–883

    Google Scholar 

  31. Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164:428–431

    Google Scholar 

  32. Deng D, Moverare J, Peng RL, Söderberg H (2017) Microstructure and anisotropic mechanical properties of EBM manufactured Inconel 718 and effects of post heat treatments. Mater Sci Eng, A 693:151–163

    Google Scholar 

  33. Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86:1–16

    Google Scholar 

  34. Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38:74–84

    Google Scholar 

  35. Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6 V-2Sn. Wear 202(2):142–148

    Google Scholar 

  36. Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253

    Google Scholar 

  37. Rahman M, Seah WKH, Teo TT (1997) The machinability of Inconel 718. J Mater Process Technol 63(1–3):199–204

    Google Scholar 

  38. Choudhury I, El-Baradie M (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77(1–3):278–284

    Google Scholar 

  39. Arunachalam R, Mannan MA (2000) Machinability of nickel-based high temperature alloys. Mach Sci Technol Int J 4:127–168

    Google Scholar 

  40. Ducros C, Benevent V, Sanchette F (2003) Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools. Surf Coat Technol 163–164:681–688

    Google Scholar 

  41. Sharman A, Dewes RC, Aspinwall DK (2001) Tool life when high speed ball nose end milling Inconel 718. J Mater Process Technol 118(1–3):29–35

    Google Scholar 

  42. Shokrani A, Dhokia V, Newman ST (2017) Hybrid cooling and lubricating technology for CNC milling of Inconel 718 nickel alloy. Procedia Manuf 11(6):625–632

    Google Scholar 

  43. Cantero JL, Díaz-Álvarez J, Miguélez MH, Marín NC (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297(1–2):885–894

    Google Scholar 

  44. Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77

    Google Scholar 

  45. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Des 30(5):1718–1725

    Google Scholar 

  46. Bhatt A, Attia H, Vargas R, Thomson V (2010) Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol Int 43(5–6):1113–1121

    Google Scholar 

  47. Costes JP, Guillet Y, Poulachon G, Dessoly M (2007) Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int J Mach Tools Manuf 47(7–8):1081–1087

    Google Scholar 

  48. Xavior MA, Manohar M, Jeyapandiarajan P, Madhukar PM (2017) Tool wear assessment during machining of Inconel 718. Procedia Eng 174:1000–1008

    Google Scholar 

  49. Thakur D, Ramamoorthy B, Vijayaraghavan L (2009) Optimization of high speed turning parameters of superalloy Inconel 718 material using Taguchi technique. Indian J Eng Mater Sci 16(1):44–50

    Google Scholar 

  50. Biermann D, Kirschner M (2015) Experimental investigations on single-lip deep hole drilling of superalloy Inconel 718 with small diameters. J Manuf Process 20:332–339

    Google Scholar 

  51. M’Saoubi R, Axinte D, Soo SL et al (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann Manuf Technol 64(2):557–580

    Google Scholar 

  52. Machado AR, Wallbank J, Pashby IR, Ezugwu EO (1998) Tool performance and chip control when machining Ti6A14 V and inconel 901 using high pressure coolant supply. Mach Sci Technol 2(1):1–12

    Google Scholar 

  53. Sharma P, Chakradhar D, Narendranath S (2016) Effect of wire diameter on surface integrity of wire electrical discharge machined Inconel 706 for gas turbine application. J Manuf Process 24:170–178

    Google Scholar 

  54. Yilmaz O, Okka MA (2010) Effect of single and multi-channel electrodes application on EDM fast hole drilling performance. Int J Adv Manuf Technol 51(1–4):185–194

    Google Scholar 

  55. Chen Z, Moverare J, Peng RL, Johansson S (2016) Surface integrity and fatigue performance of Inconel 718 in wire electrical discharge machining. Procedia CIRP 45:307–310

    Google Scholar 

  56. Biermann D, Kirschner M, Eberhardt D (2014) A novel method for chip formation analyses in deep hole drilling with small diameters. Prod Eng 8(4):491–497

    Google Scholar 

  57. Klocke F, Welling D, Klink A et al (2014) Evaluation of advanced Wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Procedia CIRP 14:430–435

    Google Scholar 

  58. Dave HK, Desai KP, Raval HK (2013) Development of semi empirical model for predicting material removal rate during orbital electro discharge machining of Inconel 718. Int J Mach Mach Mater 13(2–3):215–230

    Google Scholar 

  59. Rajesha S, Sharma AK, Kumar P (2012) On electro discharge machining of Inconel 718 with hollow tool. J Mater Eng Perform 21(6):882–891

    Google Scholar 

  60. Ghewade D, Nipanikar S (2011) Experimental study of electro discharge machining for Inconel material. J Eng Res Stud 2(2):107–112

    Google Scholar 

  61. Ahmad S, Lajis MA (2013) Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration. IOP Conf Ser Mater Sci Eng 50:012062

    Google Scholar 

  62. Hasçalik A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl Surf Sci 253(22):9007–9016

    Google Scholar 

  63. Li L, Li ZY, Wei XT, Cheng X (2015) Machining characteristics of inconel 718 by sinking-EDM and wire-EDM. Mater Manuf Process 30(8):968–973

    Google Scholar 

  64. Geethapriyan T, Kalaichelvan K, Muthuramalingam T (2016) Influence of coated tool electrode on drilling Inconel alloy 718 in electrochemical micro machining. Procedia CIRP 46:127–130

    Google Scholar 

  65. Kuppan P, Narayanan S, Oyyaravelu R, Balan ASS (2017) Performance evaluation of electrode materials in electric discharge deep hole drilling of Inconel 718 superalloy. Procedia Eng 174:53–59

    Google Scholar 

  66. Prihandana GS, Sriani T, Mahardika M et al (2014) Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. Int J Adv Manuf Technol 75(1–4):599–613

    Google Scholar 

  67. Mohanty CP, Mahapatra SS, Singh MR (2017) Effect of deep cryogenic treatment on machinability of Inconel 718 in powder-mixed EDM. Int J Mach Mach Mater 19(4):343–373

    Google Scholar 

  68. Govindan P, Joshi SS (2010) Experimental characterization of material removal in dry electrical discharge drilling. Int J Mach Tools Manuf 50(5):431–443

    Google Scholar 

  69. Yadav US, Yadava V (2014) Parametric study on electrical discharge drilling of aerospace nickel alloy. Mater Manuf Process 29(3):260–266

    Google Scholar 

  70. Kuppan P, Narayanan S, Rajadurai A (2012) Experimental investigations into electrical discharge deep hole drilling of Inconel 718 using copper-tungsten electrode. Int J Mechatron Manuf Syst 5(5–6):399–418

    Google Scholar 

  71. Lacerda F, Stedile L, Torres R, Soares P (2011) Integridade da superfície da liga Ti6Al4V usinada por EDM por penetração utilizando eletrodos de grafita. In: 6° Congr Bras Eng Fabr

  72. Kuppan P, Narayanan S, Rajadurai A, Adithan M (2015) Effect of EDM parameters on hole quality characteristics in deep hole drilling of Inconel 718 superalloy. Int J Manuf Res 10(1):45–63

    Google Scholar 

  73. Boopathi R, Sundaram S, Senthilkumar C, Prabu M (2017) Effect of machining characteristics of nano-TiC mixed dielectric fluids on Inconel 718 in the EDM process. Mater Test 59(4):402–408

    Google Scholar 

  74. Holmberg J, Berglund J, Wretland A, Beno T (2019) Evaluation of surface integrity after high energy machining with EDM, laser beam machining and abrasive water jet machining of alloy 718. Int J Adv Manuf Technol 100(5–8):1575–1591

    Google Scholar 

  75. Aggarwal V, Khangura SS, Garg RK (2015) Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. Int J Adv Manuf Technol 79(1–4):31–47

    Google Scholar 

  76. Rao PS, Ramji K, Satyanarayana B (2014) Experimental investigation and optimization of wire EDM parameters for surface roughness, MRR and white layer in machining of aluminium alloy. Procedia Mater Sci 5:2197–2206

    Google Scholar 

  77. Ay M, Çaydaş U, Hasçalik A (2013) Optimization of micro-EDM drilling of inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023

    Google Scholar 

  78. Mohanty A, Talla G, Gangopadhyay S (2014) Experimental investigation and analysis of EDM characteristics of inconel 825. Mater Manuf Process 29(5):540–549

    Google Scholar 

  79. Lin MY, Tsao CC, Hsu CY et al (2013) Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method. Trans Nonferrous Met Soc China 23(3):661–666

    Google Scholar 

  80. Imran M, Mativenga PT, Gholinia A, Withers PJ (2015) Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol 79(5–8):1303–1311

    Google Scholar 

  81. Boopati R, Sundaram S (2014) Influence of process parameters for electrical discharge machine using nano particle and brass electrode. Int J Res Advent Technol 2(11):45–49

    Google Scholar 

  82. Wang K, Gelgele HL, Wang Y et al (2003) A hybrid intelligent method for modelling the EDM process. Int J Mach Tools Manuf 43(10):995–999

    Google Scholar 

  83. Kumar A, Bagal DK, Maity KP (2014) Numerical modeling of wire electrical discharge machining of super alloy Inconel 718. Procedia Eng 97:1512–1523

    Google Scholar 

  84. Yadav US, Yadava V (2015) Experimental modeling and multiobjective optimization of electrical discharge drilling of aerospace superalloy material. Proc Inst Mech Eng Part B J Eng Manuf 229(10):1764–1780

    Google Scholar 

  85. Çaydaş U, Ay M (2016) WEDM cutting of inconel 718 nickel-based superalloy: effects of cutting parameters on the cutting quality. Mater Tehnol 50(1):117–125

    Google Scholar 

  86. Kuriakose S, Mohan K, Shunmugam MS (2003) Data mining applied to wire-EDM process. J Mater Process Technol 142(1):182–189

    Google Scholar 

  87. Atzeni E, Bassoli E, Gatto A et al (2015) Surface and sub surface evaluation in coated-wire electrical discharge machining (WEDM) of INCONEL alloy 718. Procedia CIRP 33:388–393

    Google Scholar 

  88. Li L, Wei XT, Guo YB et al (2014) Surface integrity of Inconel 718 by wire-EDM at different energy modes. J Mater Eng Perform 23(8):3051–3057

    Google Scholar 

  89. Chen YC, Liao YS (2003) Study on wear mechanisms in drilling of Inconel 718 superalloy. J Mater Process Technol 140(1–3):269–273

    Google Scholar 

  90. Jahan MP, Wong YS, Rahman M (2012) Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J Manuf Process 14(3):343–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Lacerda Amorim.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldin, V., Baldin, C.R.B., Machado, A.R. et al. Machining of Inconel 718 with a defined geometry tool or by electrical discharge machining. J Braz. Soc. Mech. Sci. Eng. 42, 265 (2020). https://doi.org/10.1007/s40430-020-02358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02358-7

Keywords

Navigation