Skip to main content
Log in

Numerical simulation of ellipsoidal particles deposition in the human nasal cavity under cyclic inspiratory flow

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, a computational fluid dynamics model of a 53-year-old nonsmoking Caucasian male was used to simulate the deposition of ellipsoidal particles under cyclic inhalation in the nasal cavity. A sinusoidal pattern (frequency: 0.25 Hz, maximum volume flow rate: 20 L/min) was set to simulate the realistic breathing pattern under a rest condition. In order to find the trajectory of inhaled particles, a series of unsteady particle tracking simulations using a Lagrangian approach were performed and ellipsoidal particles between 1 and 20 µm in size and 1–50 in aspect ratio were injected in the fluid domain. Results showed that for small particles (d = 1 µm), the deposition pattern follows the airflow pattern, and it increases/decreases by an increase/decrease in the inlet volume flow rate. Besides, the deposition is highly sensitive to the shape of the particles, and it rises by an increase in the aspect ratio. Interestingly, for particles in the range of 5–20 µm, the deposition is mainly dependent on the diameter. Also, the deposition pattern of particles with a diameter of 20 µm is entirely different from the deposition pattern of smaller particles, and it does not follow the inlet airflow pattern. Moreover, it was seen that the deposition fraction under cyclic breathing pattern in the acceleration and deceleration phases of the inhalation is not equal. Finally, it was shown that the inertial force has more contribution to the deposition of ellipsoidal particles, and as a result, tracking these particles under the equivalent mean airflow rate (Q = 12.7 L/min) causes significant errors in the total deposition fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harris EJA, Musk A, de Klerk N, Reid A, Franklin P, Brims FJH (2019) Diagnosis of asbestos-related lung diseases. Expert Rev Respir Med 13:241–249. https://doi.org/10.1080/17476348.2019.1568875

    Article  Google Scholar 

  2. Torge A, Pavone G, Jurisic M, Lima-Engelmann K, Schneider M (2019) A comparison of spherical and cylindrical microparticles composed of nanoparticles for pulmonary application. Aerosol Sci Technol 53:53–62. https://doi.org/10.1080/02786826.2018.1542484

    Article  Google Scholar 

  3. Heyder J, Rudolf G (1975) Deposition of aerosol particles in the human nose. Inhaled Part 4:107–126

    Google Scholar 

  4. Hounam RF, Black A, Walsh M (1971) The deposition of aerosol particles in the nasopharyngeal region of the human respiratory tract. J Aerosol Sci 2:47–61

    Article  Google Scholar 

  5. Pattle RE (1961) The retention of gases and particles in the human nose. Inhaled Part Vapours 1:302–309

    Google Scholar 

  6. Keck T, Leiacker R, Klotz M, Lindemann J, Riechelmann H, Rettinger G (2000) Detection of particles within the nasal airways during respiration. Eur Arch Oto-Rhino-Laryngol 257:493–497

    Article  Google Scholar 

  7. Cheng Y-S, Yamada Y, Yeh H-C, Swift DL (1988) Diffusional deposition of ultrafine aerosols in a human nasal cast. J Aerosol Sci 19:741–751

    Article  Google Scholar 

  8. Garcia GJM, Tewksbury EW, Wong BA, Kimbell JS (2009) Interindividual variability in nasal filtration as a function of nasal cavity geometry. J Aerosol Med Pulm Drug Deliv 22:139–156

    Article  Google Scholar 

  9. Kelly JT, Asgharian B, Kimbell JS, Wong BA (2004) Particle deposition in human nasal airway replicas manufactured by different methods. Part I: inertial regime particles. Aerosol Sci Technol 38:1063–1071

    Article  Google Scholar 

  10. Liu Y, Matida EA, Johnson MR (2010) Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity. J Aerosol Sci 41:569–586

    Article  Google Scholar 

  11. Zwartz GJ, Guilmette RA (2001) Effect of flow rate on particle deposition in a replica of a human nasal airway. Inhal Toxicol 13:109–127

    Article  Google Scholar 

  12. Hahn I, Scherer PW, Mozell MM (1993) Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol 75:2273–2287

    Article  Google Scholar 

  13. Bidabadi M, Hajilou M, Poorfar AK, Yosefi SH, Zadsirjan S (2014) Modeling flame propagation of micron-sized iron dust particles in media with spatially discrete sources. Fire Saf J 69:111–116

    Article  Google Scholar 

  14. Bidabadi M, Yosefi SH, Poorfar AK, Hajilou M, Zadsirjan S (2014) Modelling of combustion of a magnesium dust cloud in heterogeneous media. Combust Explos Shock Waves 50:658–663

    Article  Google Scholar 

  15. Watanabe J, Watanabe M (2019) Anatomical factors of human respiratory tract influencing volume flow rate and number of particles arriving at each bronchus. Biocybern Biomed Eng 39:526–535. https://doi.org/10.1016/j.bbe.2019.03.004

    Article  Google Scholar 

  16. Pałko KJ, Kozarski M, Darowski M (2005) Identification of mechanical parameters of respiratory system during ventilatory support of lungs. Biocybern Biomed Eng 25:73–81

    Google Scholar 

  17. Carrigy NB, Ruzycki CA, Golshahi L, Finlay WH (2014) Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J Aerosol Med Pulm Drug Deliv 27:149–169

    Article  Google Scholar 

  18. Kelly JT, Prasad AK, Wexler AS (2000) Detailed flow patterns in the nasal cavity. J Appl Physiol 89:323–337

    Article  Google Scholar 

  19. Keyhani K, Scherer PW, Mozell MM (1995) Numerical simulation of airflow in the human nasal cavity. J Biomech Eng 117:429–441

    Article  Google Scholar 

  20. Malekian D, Sajadi B, Ahmadi G, Pirhadi M (2018) A numerical study of electric force effects on detachment and deposition of particles due to a falling disk. J Aerosol Sci 124:133–145

    Article  Google Scholar 

  21. Pirhadi M, Sajadi B, Ahmadi G, Malekian D (2018) Phase change and deposition of inhaled droplets in the human nasal cavity under cyclic inspiratory airflow. J Aerosol Sci 118:64–81

    Article  Google Scholar 

  22. Shanley KT, Zamankhan P, Ahmadi G, Hopke PK, Cheng Y-S (2008) Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal Toxicol 20:1093–1100

    Article  Google Scholar 

  23. Wang SM, Inthavong K, Wen J, Tu JY, Xue CL (2009) Comparison of micron-and nanoparticle deposition patterns in a realistic human nasal cavity. Respir Physiol Neurobiol 166:142–151

    Article  Google Scholar 

  24. Worth Longest P, Xi J (2008) Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci Technol 42:579–602

    Article  Google Scholar 

  25. Bahmanzadeh H, Abouali O, Ahmadi G (2016) Unsteady particle tracking of micro-particle deposition in the human nasal cavity under cyclic inspiratory flow. J Aerosol Sci 101:86–103

    Article  Google Scholar 

  26. Hörschler I, Schröder W, Meinke M (2010) On the assumption of steadiness of nasal cavity flow. J Biomech 43:1081–1085

    Article  Google Scholar 

  27. Grgic B, Martin AR, Finlay WH (2006) The effect of unsteady flow rate increase on in vitro mouth–throat deposition of inhaled boluses. J Aerosol Sci 37:1222–1233

    Article  Google Scholar 

  28. Zhang Z, Kleinstreuer C, Kim CS (2002) Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J Aerosol Sci 33:257–281

    Article  Google Scholar 

  29. Wang Z, Hopke PK, Ahmadi G, Cheng Y-S, Baron PA (2008) Fibrous particle deposition in human nasal passage: the influence of particle length, flow rate, and geometry of nasal airway. J Aerosol Sci 39:1040–1054

    Article  Google Scholar 

  30. Inthavong K, Wen J, Tian Z, Tu J (2008) Numerical study of fibre deposition in a human nasal cavity. J Aerosol Sci 39:253–265

    Article  Google Scholar 

  31. Fan F-G, Ahmadi G (1995) Dispersion of ellipsoidal particles in an isotropic pseudo-turbulent flow field. J Fluids Eng 117:154–161

    Article  Google Scholar 

  32. Fan F-G, Ahmadi G (1995) A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J Aerosol Sci 26:813–840

    Article  Google Scholar 

  33. Guilmette RA, Cheng YS, Yeh HC, Swift DL (1994) Deposition of 0.005–12 micrometer monodisperse particles in a computer-milled, MRI-based nasal airway replica. Inhal Toxicol 6:395–399

    Article  Google Scholar 

  34. Subramaniam RP, Richardson RB, Morgan KT, Kimbell JS, Guilmette RA (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol 10:91–120

    Article  Google Scholar 

  35. Kelly JT, Asgharian B, Kimbell JS, Wong BA (2004) Particle deposition in human nasal airway replicas manufactured by different methods. Part II: ultrafine particles. Aerosol Sci Technol 38:1072–1079

    Article  Google Scholar 

  36. Schroeter JD, Kimbell JS, Asgharian B (2006) Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. J Aerosol Med 19:301–313

    Article  Google Scholar 

  37. Shi H, Kleinstreuer C, Zhang Z (2006) Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J Biomech Eng 128:697–706

    Article  Google Scholar 

  38. Shi H, Kleinstreuer C, Zhang Z (2008) Dilute suspension flow with nanoparticle deposition in a representative nasal airway model. Phys Fluids 20:13301

    Article  MATH  Google Scholar 

  39. Swift DL, Kesavanathan J (1996) The anterior human nasal passage as a fibrous filter for particles. Chem Eng Commun 151:65–78. https://doi.org/10.1080/00986449608936542

    Article  Google Scholar 

  40. Se C, Inthavong K, Tu J (2010) Unsteady particle deposition in a human nasal cavity during inhalation. J Comput Multiph Flows 2:207–218. https://doi.org/10.1260/1757-482X.2.4.207

    Article  Google Scholar 

  41. Shi H, Kleinstreuer C, Zhang Z (2007) Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci 38:398–419. https://doi.org/10.1016/j.jaerosci.2007.02.002

    Article  Google Scholar 

  42. Pedlosky J (2013) Geophysical fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  43. Ouchene R, Khalij M, Tanière A, Arcen B (2015) Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers. Comput Fluids 113:53–64. https://doi.org/10.1016/j.compfluid.2014.12.005

    Article  MathSciNet  MATH  Google Scholar 

  44. Sanjeevi SKP, Kuipers JAM, Padding JT (2018) Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Int J Multiph Flow 106:325–337. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.011

    Article  MathSciNet  Google Scholar 

  45. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70

    Article  Google Scholar 

  46. Dastan A, Abouali O, Ahmadi G (2014) CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci 69:132–149

    Article  Google Scholar 

  47. Dennis SCR, Singh SN, Ingham DB (1980) The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J Fluid Mech 101:257–279. https://doi.org/10.1017/S0022112080001656

    Article  MATH  Google Scholar 

  48. Van Doormaal JP, Raithby GD (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transf 7:147–163. https://doi.org/10.1080/01495728408961817

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir R. Esmaeili.

Additional information

Technical Editor: Erick de Moraes Franklin, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, A.R., Sajadi, B. & Akbarzadeh, M. Numerical simulation of ellipsoidal particles deposition in the human nasal cavity under cyclic inspiratory flow. J Braz. Soc. Mech. Sci. Eng. 42, 243 (2020). https://doi.org/10.1007/s40430-020-02345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02345-y

Keywords

Navigation