Skip to main content
Log in

Numerical investigation of material properties and operating parameters effects in generating motorcycle break squeal using the finite element method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

One of the factors of influence on driver comfort is undoubtedly the noise. The noise generated by the brake, in addition to causing discomfort, can cause uncertainty as to the existence of mechanical failure in the brake system. Among the types of noise related to disc brakes, what has been generating a greater interest of researchers is squeal noise. This research paper is concerned with the disc brake squeal problem for motorcycles. The aim of the present research is developing a finite element model of the motorcycle disc brake in order to improve the understanding of the influence of material and operational parameters on squeal generation. Stability analysis of the disc brake assembly was accomplished to find unstable frequencies. A parametric study was carried out to investigate the effect of changing Young’s modulus of the disc, back plate, friction material and operational parameters, as rotational velocity of the disc, pressure and temperature, on squeal generation. The results of simulation indicated that material and operational parameters play a substantial role in generating the squeal noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

F y :

Normal forces (N)

F x :

Friction forces (N)

\(\mu\) :

Coefficient of friction

k c :

Stiffness of the contact elements (N/m)

E :

Elasticity module (GPa)

y :

Vertical displacement (m)

x :

Horizontal displacement (m)

\(\ddot{x}\) :

Horizontal acceleration (m/s2)

\(\dot{x}\) :

Horizontal speed (m/s)

u :

Generic displacement

y i :

Modal coordinate

λ i :

Complex eigenvalues

σ i :

Real part of eigenvalue

ω i :

Imaginary part of eigenvalue

j :

Imaginary part \(\left( {\sqrt { - 1} } \right)\)

[Kf]:

Stiffness matrices of the contact interface elements

[k]:

Stiffness matrices

[C]:

Damping matrices

{u}:

Coordinate transformation

{ϕi}:

Eigenvector normalized

[Λ2]:

Diagonal matrix containing the natural frequencies of the system

[I]:

Moment of inertia matrices

[ψ]:

Complex eigenvalues and eigenvectors

References

  1. Kinkaid N, O’Reilly O, Papadopoulos P (2003) Automotive disc brake squeal: review. J Sound Vib 267:2003. https://doi.org/10.1016/s0022-460x(02)01573-0

    Article  Google Scholar 

  2. Akay A (2002) Acoustics of friction. J Acoust Soc Am 111(4):1525–1548. https://doi.org/10.1121/1.1456514

    Article  Google Scholar 

  3. Tan C, Chen F (2005) Disc brake squeal: mechanisms, analysis, evaluation, and reduction/prevention. Sae book monograph.” Cap. 1 Mechanisms and Causes of Disc Brake Squeal, pp 1–25

  4. Dunlap K, Riehle M, Longhouse R (1999) An investigative overview of automotive disc brake noise. In: International congress and exposition detroit, Michigan, USA: SAE. https://doi.org/10.4271/1999-01-0142

  5. Matozo LT (2012) Estudo da Relação entre Propriedades de Compósitos de Fricção Aplicados a Sistemas de Freio a Disco e a Propensão à Ocorrência de Squeal Noise. Dissertation for the degree of Doctor of Philosophy. Federal University of Rio Grande do Sul, Brazil

  6. Trichês JM, Gerges S, Jordan R (2004) Reduction of squeal noise from disc brake systems using constrained layer damping. J Braz Soc Mech Sci Eng 24:340–348. https://doi.org/10.1590/s1678-58782004000300011

    Article  Google Scholar 

  7. Jordan R, Junior MT, Gerges S (2003). Determinação de propriedades mecânicas de materiais de fricção de pastilhas de freio através de ensaios dinâmicos. In: 6th international brake colloquium and engineering display, Caxias do Sul, RS: SAE, Brasil, pp 41–47

  8. Ouyang H, Nack W, Yuan Y, Chen F (2005) Numerical analysis of automotive disc brake squeal: a review. Int J Veh Noise Vib 1:3–4. https://doi.org/10.1504/ijvnv.2005.007524

    Article  Google Scholar 

  9. Liles GD (1989) Analysis of disc brake squeal using finite element methods. In: SAE paper 891150

  10. Lee YS, Brooks PC, Barton DC, Crolla DA (1998) A study of disc brake squeal propensity using a parametric finite element model. In IMechE conference transaction, European conference on Noise and Vibration, pp 191–201

  11. Kung S-W, Stelzer G, Belsky V, Bajer A (2003) Brake squeal analysis incorporating contact conditions and other nonlinear effects. In: SAE paper 2003-01-3343. https://doi.org/10.4271/2003-01-3343

  12. Liu P, Zheng H, Cai C, Wang YY, Lu C, Ang KH, Liu GR (2007) Analysis of disc brake squeal using the complex eigenvalue method. Appl Acoust 68:603–615. https://doi.org/10.1016/j.apacoust.2006.03.012

    Article  Google Scholar 

  13. Preston JD, Forthofer RJ (1971) Correlation of vehicle, dynamometer and other laboratory tests for brake friction materials. Society of Automotive Engineers, paper 710250. https://doi.org/10.4271/710250

  14. Silva DT (2007) Determinação do Fluxo de Calor entre Pastilha e Disco de Freio Durante um Intervalo de Frenagem. Monografia, Escola de Engenharia - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil

  15. Tirovic M, Todoronc J (1988) Flextural effects in commercial vehicle disc brake pads. Conference on Disc brakes for commercial vehicles, London, paper C455/88, pp. 47-52 (Institution of Mechanical Engineers, London). https://doi.org/10.1243/pime_proc_1978_192_002_02

  16. Tsang PHS, Jacko MG, Rhee SK (1985) Comparison of chase and inertial dynamometer testing of automotive friction materials. In: Wear of materials: international conference on wear of materials, pp 129–137

  17. Wilson AJ, Bowsher GT (1971) Machine testing for brake lining classification. Society of automotive engineers, paper 710249. https://doi.org/10.4271/710249

  18. Tirovic M, Day AJ (1991) Disc brake interface pressure distributions. Proc Inst Mech Eng Part D J Autom Eng 205(2):137–146. https://doi.org/10.1243/pime_proc_1991_205_162_02

    Article  Google Scholar 

  19. Rabinowicz E (1965) Friction and wear of materials, 2nd edn. Wiley

  20. Duffour P (2002) Noise generation in vehicle brakes. Dissertation for the degree of Doctor of Philosophy. Engineering Department of Cambridge University

  21. Neuman RF, McNinch JH (1983) Performance characterization of dry friction materials. In: IMechE conference publications (Institution of Mechanical Engineers). Published by Mechanical Engineering Publications for the Institution of Mechanical Engineers, London, p 233–238, ISSN 0144-0799

  22. Belhocine A, Ghazaly NM (2015) Effects of material properties on generation of brake squeal noise using finite element method. Latin Am J Solids Struct 12:1432–1447. https://doi.org/10.1590/1679-78251520

    Article  Google Scholar 

  23. Spurr RT (1961) A theory of brake squeal. Proc Autom Div Inst Mech Eng 1:33–40. https://doi.org/10.1243/pime_auto_1961_000_009_02

    Article  Google Scholar 

  24. Neis PD (2012) Projeto e Construção de um Tribômetro com Controle Independente da Temperatura do Disco. Dissertation for the degree of Doctor of Philosophy. Federal University of Rio Grande do Sul, Brazil

  25. Trichês Júnior M, Gerges SNY, Jordan R (2008) Analysis of brake squeal noise using the finite element method: A parametric study. Appl Acoust 69(2):147–162. https://doi.org/10.1016/j.apacoust.2007.10.003

    Article  Google Scholar 

  26. Xiao X, Yin Y, Bao J, Lu L, Feng X (2016) Review on the friction and wear of brake materials. Adv Mech Eng 8(5):1–10. https://doi.org/10.1177/1687814016647300

    Article  Google Scholar 

  27. Dezi M, Forte P, Frendo F (2013) Motorcycle brake squeal: experimental and numerical investigation on a case study. Meccanica 49(4):1011–1021. https://doi.org/10.1007/s11012-013-9848-y

    Article  Google Scholar 

  28. Bajer A, Belsky V, Kung SW (2004) The influence of friction-induced damping and nonlinear effects on brake squeal analysis. In: SAE technical paper 2004-01-2794. https://doi.org/10.4271/2004-01-2794

  29. Esgandari M, Taulbut R, Olatunbosun O (2013) Effect of damping in complex eigenvalue analysis of brake noise to control over-prediction of instabilities: an experimental study. In: SAE technical paper 2013-01-2034. https://doi.org/10.4271/2013-01-2034

  30. Silva JGP, Fulco ER, Varante PED, Nascimento V, Diesel FN, Boniatti DL (2013) Numerical and experimental evaluation of brake squeal. In: SAE technical paper 2013-36-0030. https://doi.org/10.4271/2013-36-0030

  31. Nouby M, Srinivasan K (2013) Parametric studies of disc brake squeal using finite element approach. J Mek 29:52–66

    Google Scholar 

  32. Bergman F, Eriksson M, Jacobson S (2000) The effect of reduced contact area on the occurrence of disc brake squeals for an automotive brake pad. Proc Inst Mech Eng Part D J Autom Eng 214(5):561–568. https://doi.org/10.1243/0954407001527844

    Article  Google Scholar 

  33. Chen F, Tong H, Chen SE, Quaglia R (2003) On automotive disc brake squeal part IV reduction and prevention. SAE technical paper series. https://doi.org/10.4271/2003-01-3345

  34. Fieldhouse JD, Steel WP (2003) A study of brake noise and the influence of the centre of pressure at the disc/pad interface, the coefficient of friction and calliper mounting geometry. Proc Inst Mech Eng Part D J Autom Eng 217(11):957–973. https://doi.org/10.1243/095440703770383866

    Article  Google Scholar 

  35. Lee YS, Brooks PC, Barton DC, Crolla DA (2003) A predictive tool to evaluate disc brake squeal propensity. Part 1: the model philosophy and the contact problem. Int J Veh Des 31(3):289. https://doi.org/10.1504/ijvd.2003.003360

    Article  Google Scholar 

  36. Joe Y-G, Cha B-G, Sim H-J, Lee H-J, Oh J-E (2008) Analysis of disc brake instability due to friction-induced vibration using a distributed parameter model. Int J Autom Technol 9(2):161–171. https://doi.org/10.1007/s12239-008-0021-x

    Article  Google Scholar 

  37. Lee YS, Brooks PC, Barton DC, Crolla DA (2003) A predictive tool to evaluate disc brake squeal propensity Part 3: parametric design studies. Int J Veh Des 31(3):330. https://doi.org/10.1504/ijvd.2003.003364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rômulo do Nascimento Rodrigues.

Additional information

Technical Editor: José Roberto de França Arruda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, M.H.P., do Nascimento Rodrigues, R., de Araújo Bezerra, R. et al. Numerical investigation of material properties and operating parameters effects in generating motorcycle break squeal using the finite element method. J Braz. Soc. Mech. Sci. Eng. 42, 239 (2020). https://doi.org/10.1007/s40430-020-02324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02324-3

Keywords

Navigation