Skip to main content

Advertisement

Log in

Design and performance optimization of a very low head turbine with high pitch angle based on two-dimensional optimization

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Very low head (VLH) axial hydro turbines are efficient turbomachinery to harness energy from tidal or river currents and increase renewable energy penetration in the world’s electric power generation. In this paper, the initial design of a VLH turbine with high pitch blade is optimized. The class function/shape function transformation method is applied along with a coupling of XFOIL with a MATLAB code to find optimum blade profiles with minimum drag-to-lift ratio. SST kω turbulence model is implemented to solve three-dimensional (3D) continuity and RANS equations by considering homogeneous multiphase model with standard free surface flow. The numerical results are validated against available experimental measurements, and the optimization results are discussed. The numerical results indicated that efficiency and power of the VLH turbine at the design point increased by 2.4% and 7.7 kW, respectively. Analyzing pressure distribution on suction and pressure sides of runner blades showed no occurrence of cavitation in operating condition of the turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

C :

Chord length (m)

C D :

Drag coefficient

C L :

Lift coefficient

C s :

Speed of sound

C θ :

Tangential component of absolute velocity (m s−1)

D :

Drag force (N)

D ω :

Cross-section diffusion term

g :

Acceleration due to gravity (ms−2)

G k :

Generation of k

G ω :

Generation of ω

H :

Head parameter (m)

k :

Turbulence kinetic energy

L :

Lift force (N)

Mach:

Mach number

n :

Rotational speed (rpm)

N b :

Number of blades

N s :

Specific speed

P :

Power (kW)

Δp :

Pressure drop (Pa)

Q :

Discharge (m3 s−1)

r :

Radius (m)

Re:

Reynolds number

S :

Solidity

T :

Torque (N m)

U :

Blade linear velocity (m s−1)

u i :

Velocity components (m s−1)

W :

Flow speed (m s−1)

X :

Horizontal coordinates of airfoil (m)

x i :

x-, y-, and z-directions

y :

Vertical coordinates of airfoil (m)

Y k :

Dissipation of k due to turbulence

Y ω :

Dissipation of ω due to turbulence

α :

Absolute speed angle (°)

β :

Relative speed angle (°)

μ t :

Turbulent viscosity

ξ :

y/c

η :

Efficiency (%)

ρ :

Density (kg m−3)

Ψ :

x/c

ω :

Rotational speed or specific turbulence dissipation

Γ k :

Effective diffusivity for k

Γ ω :

Effective diffusivity for ω

0:

Stagnation condition

1, (3):

Runner inlet (validation case)

2, (4):

Runner exit (validation case)

∞:

Average vector

l:

Lower surface

u:

Upper surface

H:

Hydraulic

References

  1. Market Report Series: Renewables (2018) https://www.iea.org/renewables2018/

  2. Canadian Hydraulics Centre., National Research Council of Canada., Canada. Natural Resources Canada., CanmetENERGY (Canada), Assessment of Canada’s hydrokinetic power potential : phase I report—methodology and data review, Natural Resources Canada, 2010

  3. Elbatran AH, Yaakob OB, Ahmed YM, Shabara HM (2015) Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: a review. Renew Sustain Energy Rev 43:40–50. https://doi.org/10.1016/j.rser.2014.11.045

    Article  Google Scholar 

  4. Penche C (2004) Guide on how to develop a small hydropower, chapter 1. The European Small Hydropower Association, Belgium

    Google Scholar 

  5. Williamson SJ, Stark BH, Booker JD (2011) Low head pico hydro turbine selection using a multi-criteria analysis. World Renew Energy Congr. https://doi.org/10.1016/j.renene.2012.06.020

    Article  Google Scholar 

  6. Sotoude Haghighi MH, Mirghavami SM, Chini SF, Riasi A (2019) Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades. Renew Energy 135:266–276. https://doi.org/10.1016/j.renene.2018.12.024

    Article  Google Scholar 

  7. Fraser R, Deschênes C, O’Neil C, Leclerc M (2007) VLH: development of a new turbine for very low head sites. In: Proceedings of 15th waterpower, pp 1–9

  8. Lautier P, O’Neil C, Deschenes C, Ndjana HJN, Fraser R, Leclerc M (2007) Variable speed operation of a new very low head hydro turbine with low environmental impact. In: 2007 IEEE Canada electrical power conference. IEEE, pp 85–90. https://doi.org/10.1109/epc.2007.4520311

  9. Lewis RI (1996) Turbomachinery performance analysis. Arnold, London

    Google Scholar 

  10. Janjua AB, Khalil MS (2013) Blade profile optimization of Kaplan turbine using CFD analysis. Mehran Univ Res J Eng Technol 45:559–574

    Google Scholar 

  11. Prasad V (2012) Numerical simulation for flow characteristics of axial flow hydraulic turbine runner. Energy Proc 14:2060–2065. https://doi.org/10.1016/J.EGYPRO.2011.12.1208

    Article  Google Scholar 

  12. Alexander KV, Giddens EP, Fuller AM (2009) Axial-flow turbines for low head microhydro systems. Renew Energy 34:35–47. https://doi.org/10.1016/J.RENENE.2008.03.017

    Article  Google Scholar 

  13. Singh P, Nestmann F (2009) Experimental optimization of a free vortex propeller runner for micro hydro application. Exp Therm Fluid Sci 33:991–1002. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2009.04.007

    Article  Google Scholar 

  14. Dixon SL, Hall CA (2014) Fluid mechanics and thermodynamics of turbomachinery, chapters 2, 6, and 9, 7th edn. Elsevier, Amsterdam. https://doi.org/10.1016/c2011-0-05059-7

    Book  Google Scholar 

  15. Muis A, Sutikno P (2014) Design and simulation of very low head axial hydraulic turbine with variation of swirl velocity criterion. Int J Fluid Mach Syst 7:68–79. https://doi.org/10.5293/IJFMS.2014.7.2.068

    Article  Google Scholar 

  16. Hoghooghi H, Durali M, Kashef A (2018) A new low-cost swirler for axial micro hydro turbines of low head potential. Renew Energy 128:375–390. https://doi.org/10.1016/j.renene.2018.05.086

    Article  Google Scholar 

  17. Sutikno P, Adam IK (2011) Design, simulation and experimental of the very low head turbine with minimum pressure and free vortex criterions. Int J Mech Mech Eng 11:9–15

    Google Scholar 

  18. Banaszek M, Tesch K (2010) Rotor blade geometry optimization in Kaplan turbine. Sci Bull Acad Comput Cent Gdansk 14:209–225

    Google Scholar 

  19. Luo X, Zhu G, Feng J (2014) Multi-point design optimization of hydrofoil for marine current turbine. J Hydrodyn Ser B 26:807–817. https://doi.org/10.1016/S1001-6058(14)60089-5

    Article  Google Scholar 

  20. Hothersall R (2004) Hydrodynamic design guide for small Francis and propeller turbines, chapters 2, 3, and 10. UNIDO, Vienna

    Google Scholar 

  21. Muis A, Sutikno P, Soewono A, Hartono F (2015) Design optimization of axial hydraulic turbine for very low head application. Energy Proc 68:263–273. https://doi.org/10.1016/J.EGYPRO.2015.03.255

    Article  Google Scholar 

  22. Randelhoff J (2000) Optimisation and design of two micro-hydro turbines for medium and low head applications. University of Natal, Durban

    Google Scholar 

  23. Gōvinda Rāu NS (1983) Fluid flow machines. Tata McGraw-Hill, New York

    Google Scholar 

  24. Nguyen C (2005) Turbulence modeling, 1st edn. MIT, Cambridge, pp 1–6

    Google Scholar 

  25. ANSYS® (2013) Academic Research, Release 15.0, Help System, Coupled Field Analysis Guide, ANSYS, Inc

  26. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  27. Talukdar PK, Sardar A, Kulkarni V, Saha UK (2018) Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers Manag 158:36–49. https://doi.org/10.1016/j.enconman.2017.12.011

    Article  Google Scholar 

  28. Thakur N, Biswas A, Kumar Y, Basumatary M (2018) CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2018.11.014

    Article  Google Scholar 

  29. Derakhshan S, Ashoori M, Salemi A (2017) Experimental and numerical study of a vertical axis tidal turbine performance. Ocean Eng 137:59–67. https://doi.org/10.1016/j.oceaneng.2017.03.047

    Article  Google Scholar 

  30. Kulfan BM (2008) Universal parametric geometry representation method. J Aircr 45:142–158. https://doi.org/10.2514/1.29958

    Article  Google Scholar 

  31. Kulfan BM, Bussoletti JE, Airplanes PC (2006) Fundamental parametric geometry representations for aircraft component shapes. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference

  32. Kulfan B (2007) A universal parametric geometry representation method—“CST”. In: 45th AIAA aerospace science meeting and exhibit, Nevada, USA, pp 1–36. https://doi.org/10.2514/6.2007-62

  33. Kulfan BM (2010) Recent extensions and applications of the ‘CST’ universal parametric geometry representation method. Aeronaut J 114:157–176. https://doi.org/10.1017/S0001924000003614

    Article  Google Scholar 

  34. Vu NA, Lee JW, Shu JI (2013) Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chin J Aeronaut 26:1–8. https://doi.org/10.1016/j.cja.2012.12.008

    Article  Google Scholar 

  35. Pathike P, Katpradit T, Chaitep PTS (2012) Original optimum shape of airfoil for small horizontal-axis wind turbine airfoil geometry. J Sci Technol 31:1–6

    Google Scholar 

  36. Lane KA, Marshall DD (2009) A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology. In: 47th AIAA aerospace science meeting including new horizons forum aerospace exposition, Florida, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Riasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Erick de Moraes Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Riasi, A. & Rezghi, A. Design and performance optimization of a very low head turbine with high pitch angle based on two-dimensional optimization. J Braz. Soc. Mech. Sci. Eng. 42, 9 (2020). https://doi.org/10.1007/s40430-019-2084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-2084-1

Keywords

Navigation