Abstract
The sustainable future of mobility should not be viewed as the burial of the internal combustion engine (ICE), nowadays the main source of vehicular propulsion. Even with the increasing electrification of the transport means, the low global percentage of the electric fleet, around 0.2% of the total road vehicles, associated with an annual growth rate of less than 60%, indicates that they will not significantly change the market share in the short- and medium-term periods. This means that fuel demanded by ICEs and pollutant emissions generated by them will be very relevant in the years to come. Thus, the search for significant advances in technology associated with the use of renewable fuels is very important for environmental and economic sustainability. In this regard, the present work intends to demonstrate that the association between Brazilian ethanol and advanced technology in ICEs is a promising alternative for a more sustainable global mobility in the future. For this purpose, some ethanol properties are presented to justify its relevance as an ideal biofuel for highly boosted and efficient engines. Then, environmental, social, ethical and economic impacts arising from electric vehicles are investigated, demystifying the zero-emission vehicle terminology attributed to them and, finally, new technologies for ICEs are presented, proving that they are constantly evolving and improving, which is fundamental to the future of the world automotive fleet.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- ANFAVEA:
-
Associação Nacional dos Fabricantes de Veículos Automotores
- ANEEL:
-
Agência Nacional de Energia Elétrica
- ANP:
-
Agência Nacional do Petróleo
- CO:
-
Monoxide carbon
- CO2 :
-
Carbon dioxide
- CoV:
-
Coefficient of variation
- CR:
-
Compression ratio
- DI:
-
Direct injection
- E100:
-
Ethanol
- ECU:
-
Engine control unit
- EGR:
-
Exhaust gas recirculation
- EV:
-
Electric vehicle
- FCE:
-
Fuel conversion efficiency
- GHG:
-
Greenhouse gases
- HC:
-
Hydro carbon component
- HCCI:
-
Homogeneous charge compression ignition
- HV:
-
Hybrid vehicle
- ICE:
-
Internal combustion engine
- INMETRO:
-
Instituto Nacional de Metrologia
- MBT:
-
Maximum brake torque
- NOX :
-
Nitrous oxide
- PFI:
-
Port fuel injection
- PPC:
-
Partially premixed combustion
- RCCI:
-
Reactivity-controlled compression ignition
- R&D:
-
Research and development
- RON:
-
Research octane number
- SI:
-
Spark ignition
- VVT:
-
Variable valve timing
- WI:
-
Water injection
- ZEV:
-
Zero-emission vehicle
References
Silva T, Baeta J, Neto N, Malaquias A et al (2017) Effects of internal EGR on the downsized ethanol SIDI engine performance and emission. SAE technical paper 2017-36-0264, 2017. https://doi.org/10.4271/2017-36-0264
Santos TB, Ferreira VP, Torres EA et al (2017) Energy analysis and exhaust emissions of a stationary engine fueled with diesel–biodiesel blends at variable loads. J Braz Soc Mech Sci Eng 39:3237. https://doi.org/10.1007/s40430-017-0847-0
Szulejko JE, Kumar P, Deep A, Kim K-H (2017) Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmos Pollut Res 8(1):136–140. https://doi.org/10.1016/j.apr.2016.08.002
Gervais F (2016) Anthropogenic CO2 warming challenged by 60-year cycle. Earth Sci Rev 155:129–135. https://doi.org/10.1016/j.earscirev.2016.02.005
Yang N, Wang R (2015) Sustainable technologies for the reclamation of greenhouse gas CO2. J Clean Prod 103:784–792. https://doi.org/10.1016/j.jclepro.2014.10.025
Karthickeyan V, Balamurugan P, Senthil R (2017) Comparative studies on emission reduction in thermal barrier coated engine using single blend ratio of various non-edible oils. J Braz Soc Mech Sci Eng 39:1823. https://doi.org/10.1007/s40430-016-0645-0
Chu B, Duncan S, Papachristodoulou A, Hepburn C (2013) Analysis and control design of sustainable policies for greenhouse gas emissions. Appl Therm Eng 53(2):420–431. https://doi.org/10.1016/j.applthermaleng.2012.04.022
US Energy Information Administration (2019) Annual energy outlook 2019. http://www.eia.gov/forecasts/aeo/pdf/0383(2014).pdf. Accessed 1 Mar 2019
IEA (2019) Improving the fuel economy of road vehicles. Paris, France: IEA: 86, p 2012. https://webstore.iea.org/policy-pathway-improving-the-fuel-economy-of-road-vehicles-2012. Accessed 1 Mar 2019
Silva T, Baeta J, Neto N, Malaquias A et al (2017) The use of split-injection technique and ethanol lean combustion on a SIDI engine operation for reducing the fuel consumption and pollutant emissions. SAE technical paper 2017-36-0259, 2017. https://doi.org/10.4271/2017-36-0259
Qian Y, Guo J, Zhang Y, Tao W, Xingcai L (2018) Combustion and emission behavior of N-propanol as partially alternative fuel in a direct injection spark ignition engine. Appl Therm Eng 144:126–136. https://doi.org/10.1016/j.applthermaleng.2018.08.044
Ji C, Cong X, Wang S, Shi L, Teng S, Wang D (2018) Performance of a hydrogen-blended gasoline direct injection engine under various second gasoline direct injection timings. Energy Convers Manag 171:1704–1711. https://doi.org/10.1016/j.enconman.2018.06.112
Li Q, Liu J, Jianqin F, Zhou X, Liao C (2018) Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Appl Therm Eng 137:710–720. https://doi.org/10.1016/j.applthermaleng.2018.04.017
Li Y, Khajepour A, Devaud C, Liu K (2017) Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system. Appl Energy 206:577–593. https://doi.org/10.1016/j.apenergy.2017.08.208
Wang N, Liu J, Chang WL, Lee C-f (2018) A numerical study of the combustion and jet characteristics of a hydrogen fueled turbulent hot-jet ignition (THJI) chamber. Int J Hydrog Energy 43(45):21102–21113. https://doi.org/10.1016/j.ijhydene.2018.09.156
da Costa RBR, Hernández JJ, Teixeira AF, Netto NAD, Valle RM, Roso VR, Coronado CJR (2019) Combustion, performance and emission analysis of a natural gas-hydrous ethanol dual-fuel spark ignition engine with internal exhaust gas recirculation. Energy Convers Manag 195:1187–1198. https://doi.org/10.1016/j.enconman.2019.05.094
Silva T, Baeta J, Neto N, Malaquias A et al (2017) Split-injection in a downsized ethanol SIDI engine aiming to mitigate pre-ignition. SAE technical paper 2017-36-0266, 2017. https://doi.org/10.4271/2017-36-0266
Martins D, Frank T, Simas H et al (2018) Structural analysis, survey and classification of kinematic chains for Atkinson cycle engines. J Braz Soc Mech Sci Eng 40:52. https://doi.org/10.1007/s40430-017-0939-x
Kakaee AH, Keshavarz M (2017) Simultaneous dynamic optimization of valves timing and waste gate to improve the load step transient response of a turbocharged spark ignition engine. J Braz Soc Mech Sci Eng 39:2383. https://doi.org/10.1007/s40430-017-0786-9
Baêta JGC, Silva TRV, Netto NAD, Malaquias ACT, Filho FAR, Pontoppidan M (2018) Full spark authority in a highly boosted ethanol DISI prototype engine. Appl Therm Eng 139:35–46. https://doi.org/10.1016/j.applthermaleng.2018.04.112
Forbes (2019) Seven reasons why the internal combustion engine is a dead man walking. https://www.forbes.com/sites/sap/2018/09/06/seven-reasons-why-the-internal-combustion-engine-is-a-dead-man-walking-updated/#6af807f5603f. Accessed 1 Mar 2019
The Economist (2019) The death of the internal combustion engine. https://www.forbes.com/sites/sap/2018/09/06/seven-reasons-why-the-internal-combustion-engine-is-a-dead-man-walking-updated/#6af807f5603f. Accessed 1 Mar 2019
ANP – Agência Nacional do Petróleo (2019) Biocombustíveis. http://www.anp.gov.br/biocombustiveis. Accessed 1 Mar 2019
Zangooee Motlagh MR (2015) Numerical study of the effect of ethanol blending with gasoline surrogate on pollutant emission in well-stirred reactor. J Braz Soc Mech Sci Eng 37:1609. https://doi.org/10.1007/s40430-014-0265-5
Rajgor G (2016) Greater acceleration of renewables required to meet COP21 goal. Renew Energy Focus 17(5):175–177. https://doi.org/10.1016/j.ref.2016.08.007
Mayer RM, Poulikakos LD, Lees AR, Heutschi K, Kalivoda MT, Soltic P (2012) Reducing the environmental impact of road and rail vehicles. Environ Impact Assess Rev 32(1):25–32. https://doi.org/10.1016/j.eiar.2011.02.001
Sagar AD (1995) Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction. Environ Impact Assess Rev 15(3):241–274. https://doi.org/10.1016/0195-9255(95)91707-F
EIA – Energy Information Administration (2019) Global transportation energy consumption: examination of scenarios to 2040 using ITEDD. https://www.eia.gov/analysis/studies/transportation/scenarios/pdf/globaltransportation.pdf. Accessed 1 Mar 2019
Iodice P, Senatore A (2016) New research assessing the effect of engine operating conditions on regulated emissions of a 4-stroke motorcycle by test bench measurements. Environ Impact Assess Rev 61:61–67. https://doi.org/10.1016/j.eiar.2016.07.004
Palazzo J, Geyer R (2019) Consequential life cycle assessment of automotive material substitution: replacing steel with aluminum in production of north American vehicles. Environ Impact Assess Rev 75:47–58. https://doi.org/10.1016/j.eiar.2018.12.001
Marques DO, Trevizan LSF, Oliveira IMF et al (2017) Combustion assessment of an ethanol/gasoline flex-fuel engine. J Braz Soc Mech Sci Eng 39:1079. https://doi.org/10.1007/s40430-016-0609-4
Filippini M, Heimsch F (2016) The regional impact of a CO2 tax on gasoline demand: a spatial econometric approach. Resour Energy Econ 46:85–100. https://doi.org/10.1016/j.reseneeco.2016.07.002
Nabi MN, Zare A, Hossain FM, Ristovski ZD, Brown RJ (2017) Reductions in diesel emissions including PM and PN emissions with diesel-biodiesel blends. J Clean Prod 166:860–868. https://doi.org/10.1016/j.jclepro.2017.08.096
Ardebili SMS, Solmaz H, Mostafaei M (2019) Optimization of fusel oil–gasoline blend ratio to enhance the performance and reduce emissions. Appl Therm Eng 148:1334–1345. https://doi.org/10.1016/j.applthermaleng.2018.12.005
da Costa RBR, Filho FAR, Coronado CJR, Teixeira AF, Netto NAD (2018) Research on hydrous ethanol stratified lean burn combustion in a DI spark-ignition engine. Appl Therm Eng 139:317–324. https://doi.org/10.1016/j.applthermaleng.2018.05.004
INMETRO – Instituto Nacional de Metrologia (2019) Qualidade e Tecnologia: Programa Brasileiro de Etiquetagem: Tabela de consumo e eficiência energética. http://www.inmetro.gov.br/consumidor/pbe/veiculos_leves_2018.pdf. Accessed 1 Mar 2019
METRO JORNAL (2019) Chevrolet Onix é o carro mais vendido do Brasil em 2018. https://www.metrojornal.com.br/foco/2019/01/05/onix-carro-mais-vendido-brasil-lista.html. Accessed 1 Mar 2019
Yang H-H, Liu T-C, Chang C-F, Lee E (2012) Effects of ethanol-blended gasoline on emissions of regulated air pollutants and carbonyls from motorcycles. Appl Energy 89(1):281–286. https://doi.org/10.1016/j.apenergy.2011.07.035
Li Y, Gong J, Deng Y, Yuan W, Fu J, Zhang B (2017) Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Appl Therm Eng 115:53–63. https://doi.org/10.1016/j.applthermaleng.2016.12.037
Tutak W, Jamrozik A, Pyrc M, Sobiepański M (2017) A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine. Appl Therm Eng 117:155–163. https://doi.org/10.1016/j.applthermaleng.2017.02.029
Aydın F, Öğüt H (2017) Effects of using ethanol–biodiesel–diesel fuel in single cylinder diesel engine to engine performance and emissions. Renew Energy 103:688–694. https://doi.org/10.1016/j.renene.2016.10.083
Zhuang Y, Hong G (2014) Effects of direct injection timing of ethanol fuel on engine knock and lean burn in a port injection gasoline engine. Fuel 135:27–37. https://doi.org/10.1016/j.fuel.2014.06.028
Ağbulut Ü, Sarıdemir S, Albayrak S (2019) Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. J Braz Soc Mech Sci Eng 41:389. https://doi.org/10.1007/s40430-019-1891-8
Huang Y, Hong G, Huang R (2015) Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine. Appl Energy 160:244–254. https://doi.org/10.1016/j.apenergy.2015.09.059
Doğan B, Erol D, Yaman H, Kodanli E (2017) The effect of ethanol–gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Appl Therm Eng 120:433–443. https://doi.org/10.1016/j.applthermaleng.2017.04.012
Thakur AK, Kaviti AK, Mehra R, Mer KKS (2017) Progress in performance analysis of ethanol–gasoline blends on SI engine. Renew Sustain Energy Rev 69:324–340. https://doi.org/10.1016/j.rser.2016.11.056
Alpanda S, Peralta-Alva A (2010) Oil crisis, energy-saving technological change and the stock market crash of 1973–74. Rev Econ Dyn 13(4):824–842. https://doi.org/10.1016/j.red.2010.04.003
Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, de Amorim Neto HB, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47(1):64–76. https://doi.org/10.1016/j.bjm.2016.10.003
ANP – Agência Natural do Petróleo (2019) Etanol. http://www.anp.gov.br/producao-de-biocombustiveis/etanol. Accessed 1 Mar 2019
Governo do Brasil (2019) Entenda o que é e como funciona o RenovaBio. http://www.brasil.gov.br/economia-e-emprego/2017/12/entenda-o-que-e-e-como-funciona-o-renovabio. Accessed 1 Mar 2019
Ministério de Minas e Energia (2019) RenovaBio. http://www.mme.gov.br/web/guest/secretarias/petroleo-gas-natural-e-combustiveis-renovaveis/programas/renovabio/principal. Accessed 1 Mar 2019
Governo do Brasil (2019) Matriz energética. http://www.brasil.gov.br/meio-ambiente/2010/11/matriz-energetica. Accessed 1 Mar 2019
ANFAVEA – Associação Nacional dos Fabricantes de Veículos Automotores (2019) Licenciamento total de automóveis comerciais leves por combustível. http://www.anfavea.com.br/estatisticas-2017.html. Accessed 1 Mar 2019
Governo do Brasil (2019) Rota 2030 vai fortalecer e modernizar a indústria automobilística nacional. http://www.brasil.gov.br/noticias/economia-e-financas/2018/07/rota-2030-vai-fortalecer-e-modernizar-a-industria-automobilistica-nacional. Accessed 1 Mar 2019
Manochio C (2014) Produção de bioetanol de cana de açúcar, milho e beterraba: uma comparação dos indicadores tecnológicos, ambientais e econômicos, Trabalho de conclusão de curso (Engenharia Química). Universidade Federal de Alfenas, Poços de Caldas
Franco RL (2016) Análise da Injeção Direta de Etanol em Motor Monocilindro Ótico de Pesquisa. Departamento de Engenharia Mecânica, Centro Federal de Minas Educação Tecnológica - CEFET, Belo Horizonte – MG
Baêta JGC (2006) Metodologia experimental para maximização do desempenho de um motor multicombustível turboalimentado sem prejuízo à eficiência energética global. Tese de Doutorado. Programa de Pós-graduação em Engenharia Mecânica - UFMG. Belo Horizonte - MG
Oliveira F, Lepsch F, Silva L, de Brito Oliveira L et al (2015) Warm start robustness improvement using the heated cold start system in flex fuel engines. SAE technical paper 2015-36-0202. https://doi.org/10.4271/2015-36-0202
Iodice P, Senatore A, Langella G, Amoresano A (2016) Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: an experimental investigation. Appl Energy 179:182–190. https://doi.org/10.1016/j.apenergy.2016.06.144
Sales LCM, Sodré JR (2012) Cold start characteristics of an ethanol-fuelled engine with heated intake air and fuel. Appl Therm Eng 40:198–201. https://doi.org/10.1016/j.applthermaleng.2012.01.057
Iodice P, Senatore A (2014) Cold start emissions of a motorcycle using ethanol–gasoline blended fuels. Energy Procedia 45:809–818. https://doi.org/10.1016/j.egypro.2014.01.086
Chen R-H, Chiang L-B, Chen C-N, Lin T-H (2011) Cold-start emissions of an SI engine using ethanol–gasoline blended fuel. Appl Therm Eng 31(8–9):1463–1467. https://doi.org/10.1016/j.applthermaleng.2011.01.021
Hemdal S, Denbratt I, Dahlander P, Warnberg J (2009) Stratified cold start sprays of gasoline–ethanol blends. SAE Int J Fuels Lubr 2(1):683–696. https://doi.org/10.4271/2009-01-1496
Chapman E, Cummings J, Winston-Galant M (2014) Effects of gasoline and ethanol fuel corrosion inhibitors and fuel detergents on powertrain intake valve deposits. SAE technical paper 2014-01-1383. https://doi.org/10.4271/2014-01-1383
United States Department of Agriculture (USDA), 2015 energy balance for the corn-ethanol industry. https://www.usda.gov/oce/reports/energy/2015EnergyBalanceCornEthanol.pdf. Accessed 2 Nov 2019
Soares LHB et al (2009) Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana-de-açúcar produzido no Brasil. Embrapa Agrobiologia-Circular Técnica (INFOTECA-E)
Bento CB, Filoso S, Pitombo LM, Cantarella H, Rossetto R, Martinelli LA, do Carmo JB (2018) Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. J Environ Manag 206:980–988. https://doi.org/10.1016/j.jenvman.2017.11.085
FIGUEIREDO (2012) Eduardo Barretto de. Balanço de gases de efeito estufa e emissões de CO2 do solo nos sistemas de colheita da cana-de-açúcar manual queimada e mecanizada crua. Tese de Doutorado, UNESP
Leal M, Duft D, Hernandes T, Bordonal R (2017) Brazilian sugarcane expansion and deforestation. In: European biomass conference and exhibition proceedings. https://doi.org/10.5071/25thEUBCE2017-4CO.2.4
United States Environmental Protection Agency (EPA) (2019) Emission factors for greenhouse gas inventories. https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf. Accessed 1 Nov 2019
Instituto Brasileiro de Geografia e Estatística (IBGE) (2017) Censo Agro 2017. https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/index.html. Accessed 2 Nov 2019
Companhia Nacional de Abastecimento (CONAB) (2018) Acompanhamento da safra brasileira, V. 5 - SAFRA 2018/19 N.1 - Primeiro levantamento, maio 2018, ISSN 2318-7921
Balmford A, Amano T, Bartlett H et al (2018) The environmental costs and benefits of high-yield farming. Nat Sustain 1:477–485. https://doi.org/10.1038/s41893-018-0138-5
Donke ACG (2016) Avaliação de desempenho ambiental e energético da produção de etanol de cana, milho e sorgo em uma unidade integrada, segundo a abordagem do ciclo de vida. Universidade de São Paulo, Dissertação de Mestrado
Feldman B (2019) Motor a combustão é coisa do passado. https://autopapo.com.br/blog-do-boris/motor-a-combustao-e-passado/. Accessed 2 Mar 2019
Utah Energy (2019) Making energy star certified homes electric vehicle ready. http://utahenergy.org/making-energy-star-certified-homes-electric-vehicle-ready/. Accessed 2 Mar 2019
Autocar (2019) Carlos Tavares: electric cars could be more problematic than people think. https://www.autocar.co.uk/car-news/industry/carlos-tavares-electric-cars-could-be-more-problematic-people-think. Accessed 2 mar 2019
USA Today (2019) Tesla’s battery gigafactory hits new output levels. https://www.usatoday.com/story/money/cars/2018/05/03/teslas-battery-gigafactory-hits-new-output-levels/576017002/. Accessed 2 Mar 2019
Biomass Magazine (2019) Gevo to deploy shockwave technology at Luverne plant. http://biomassmagazine.com/articles/15523/gevo-to-deploy-shockwave-technology-at-luverne-plant. Accessed 2 Mar 2019
von Sperling E (2012) Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Procedia 18:110–118. https://doi.org/10.1016/j.egypro.2012.05.023
IEA – International Energy Agency, World gross electricity production by source in 2017. https://www.iea.org/statistics/electricity/. Accessed 1 Mar 2019
UCN – Union of Concerned Scientists (2019) Cleaner cars from cradle to grave. https://www.ucsusa.org/clean-vehicles/electric-vehicles/life-cycle-ev-emissions. Accessed 2 Mar 2019
The Guardian (2019) The rise of electric cars could leave us with a big battery waste problem. https://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling. Accessed 2 Mar 2019
Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040
Garcia LC, Ribeiro DB, Oliveira Roque F, Ochoa-Quintero JM, Laurance WF (2017) Brazil’s worst mining disaster: corporations must be compelled to pay the actual environmental costs. Ecol Appl 27:5–9. https://doi.org/10.1002/eap.1461
European Comision (2018) Comission staff working document: report on raw materials for battery applications. Brussels, 22.11.2018
Marin RP, Cruz JRS, Martinez BVT, Vilanova AG (2019) An objective reflexion about the potencial future for diesel vehicles versus arguments based on energy populism. DYNA. https://doi.org/10.6036/9245
Serrano JR (2017) Imagining the future of the internal combustion engine for ground transport in the current context. Appl Sci 7(10):1001. https://doi.org/10.3390/app7101001
Reitz HR et al (2019) IJER editorial: the future of the internal combustion engine. Int J Engine Res. https://doi.org/10.1177/1468087419877990
Anfavea (2019) Publicação mensal da Associação Nacional dos Fabricantes de Veículos Automotores. http://www.anfavea.com.br/cartas/carta392.pdf. Accessed 12 May 2019
Agência Nacional de Energia Elétrica (ANEEL) (2019) Relatório do acompanhamento das bandeiras tarifárias. http://aneel.gov.br/documents/656877/18513600/Relat%C3%B3rio+do+Acionamento+das+Bandeiras+Tarif%C3%A1rias+-+Maio+2019/f4565225-e51d-c7a9-1a8e-d3f5047d2ae9. Accessed 12 May 2019
ANACE – Associação Nacional dos Consumidores de Energia (2019) Grandes apagões viram rotina no Brasil. http://www.anacebrasil.org.br/noticias/grandes-apagoes-viram-rotina-no-brasil/. Accessed 2 Apr 2019
IDEC – Instituto Brasileiro de Defesa do Consumidor (2019) Brasil tem problema grave de fornecimento de energia elétrica. https://idec.org.br/pesquisa-do-idec/brasil-tem-problema-grave-de-fornecimento-de-energia-eletrica. Accessed 20 Mar 2019
Financial Times (2019) São Paulo drought raises fears of Brazil energy crisis. https://www.ft.com/content/a140a1e6-b14e-11e4-a830-00144feab7de. Accessed 10 May 2019
Sanchez Moore CC, Kulay L (2019) Effect of the implementation of carbon capture systems on the environmental, energy and economic performance of the Brazilian electricity matrix. Energies 12:331. https://doi.org/10.3390/en12020331
Programa Brasileiro de Etiquetagem Veicular do Inmetro. http://www.inmetro.gov.br/consumidor/tabelas_pbe_veicular.asp. Accessed 2 Apr 2019
Toyota do Brasil. https://www.toyota.com.br/modelos/corolla/?gclid=Cj0KCQjwhuvlBRCeARIsAM720HrZLbPjvOJS3D71ivxEjUTZEjx1LTeZaO1biomPYbgAlRbXq8gAb7caAtnKEALw_wcB. Accessed 13 May 2019
ANP, Sistema de levantamento de preços. https://preco.anp.gov.br/include/Resumo_Ultimos_Meses_Index.asp. Accessed 22 Apr 2019
Agência Nacional de Energia Elétrica (ANEEL). http://www.aneel.gov.br/. Accessed 10 May 2019
Shabadin A, Megat N, Jamil H (2014) Car annual vehicle kilometer travelled estimated from car manufacturer data: an improved method. World Res Innov Conv Eng Technol 25:171–180
Fathabadi H (2018) Fuel cell hybrid electric vehicle (FCHEV): novel fuel cell/SC hybrid power generation system. Energy Convers Manag 156:192–201. https://doi.org/10.1016/j.enconman.2017.11.001
Saman Ahmadi SMT, Bathaee AHH (2018) Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy. Energy Convers Manag 160(2018):74–84. https://doi.org/10.1016/j.enconman.2018.01.020
WEG (2019) Novo padrão de rendimento dos motores elétricos. https://static.weg.net/medias/downloadcenter/h7f/h0e/WEG-novo-padrao-rendimento-motores-eletricos-IR3.pdf. Accessed 24 Apr 2019
Noce T (2010) Estudo do funcionamento de veículos elétricos e contribuições ao seu aperfeiçoamento. 2009. 127 f. Dissertação (Mestrado em Engenharia Mecânica) - Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte
Washington Post (2019) Congo cobalt mining for lithium ion battery. https://www.washingtonpost.com/graphics/business/batteries/congo-cobalt-mining-for-lithium-ion-battery/. Accessed 1 May 2019
World Economic Forum (2019) The dirty secret of electric vehicles. https://www.weforum.org/agenda/2019/03/the-dirty-secret-of-electric-vehicles/. Accessed 2 Apr 2019
World Economic Forum (2019) The hidden cost of the electric car boom. https://www.weforum.org/agenda/2018/09/the-hidden-cost-of-the-electric-car-boom-child-labour/. Accessed 2 Apr 2019
Earther (2019) The dirty truth about green batteries. https://earther.gizmodo.com/the-dirty-truth-about-green-batteries-1833922990. Accessed 20 Apr 2019
Euronews (2019) Tesla expects global shortage of electric vehicle battery minerals source. https://www.euronews.com/2019/05/02/exclusive-tesla-expects-global-shortage-of-electric-vehicle-battery-minerals-sources. Accessed 4 May 2019
Mersky AC, Sprei F, Samaras C, Qian Z (2016) Effectiveness of incentives on electric vehicle adoption in Norway. Transp Res Part D Transp Environ 46:56–68. https://doi.org/10.1016/j.trd.2016.03.011
World Economic Forum (2019) Norway electric car market vehicle sales. https://www.weforum.org/agenda/2019/04/norway-electric-car-market-vehicle-sales/. Accessed 3 May 2019
IEA (2019) Norway primary energy supply by source. https://www.iea.org/statistics/?country=NORWAY&year=2016&category=Energy%20supply&indicator=TPESbySource&mode=chart&dataTable=BALANCES. Accessed 10 May 2019
World Economic Forum (2019) Electric cars are still coal powered. https://www.weforum.org/agenda/2018/03/electric-cars-are-still-coal-powered/. Accessed 2 Apr 2019
IEA – International Energy Agency (Global EV outlook 2018. https://www.iea.org/gevo2018/. Accessed 1 Mar 2019
Clean Technica, 2019 US EV sales growth will drop to 12%. https://cleantechnica.com/2019/01/20/forecast-2019-us-ev-sales-growth-will-drop-to-12/. Accessed 2 Feb 2019
Kalghatgi G (2018) Is it really the end of internal combustion engines and petroleum in transport? Appl Energy 225:965–974. https://doi.org/10.1016/j.apenergy.2018.05.076
Minaspetro (2019) UFMG desenvolve motor a etanol que propicia o mesmo consumo de combustível de motores a gasolina. http://minaspetro.com.br/noticia/ufmg-desenvolve-motor-etanol-que-propicia-o-mesmo-consumo-de-combustivel-de-motores-gasolina/. Accessed 2 Mar 2019
UFMG (2019) Brasil perdeu o bonde da energia, lamenta pesquisador da UFMG. https://ufmg.br/comunicacao/noticias/brasil-perdeu-o-bonde-da-energia-lamenta-pesquisador-da-ufmg. Accessed 2 Mar 2019
Xylia M, Silveira S (2017) On the road to fossil-free public transport: the case of Swedish bus fleets. Energy Policy 100:397–412. https://doi.org/10.1016/j.enpol.2016.02.024
Scania Group (2019) Half of Scania’s Swedish city buses run on ethanol. https://www.scania.com/group/en/half-of-scanias-swedish-city-buses-run-on-ethanol/. Accessed 28 Sept 2019
Scania Group (2019) Scania receives large order for biofuel buses in Sweden. https://www.scania.com/group/en/scania-receives-large-order-for-biofuel-buses-in-sweden-2/. Accessed 28 Sept 2019
Janssen R, Rutz D, Hofer A, Moreira J, Santos S, Coelho ST, Velazquez S, Capaccioli S, Landahl G, Ericson J (2010) Bioethanol as sustainable bus transport fuel in Brazil and Europe. In: 18th European biomass conference and exhibition, 2010, VP4.3.12, pp 1975–1981. https://doi.org/10.5071/18thEUBCE2010-VP4.3.12
Morganti K, Almansour M, Khan A, Kalghatgi G, Przesmitzki S (2018) Leveraging the benefits of ethanol in advanced engine-fuel systems. Energy Convers Manag 157:480–497. https://doi.org/10.1016/j.enconman.2017.11.086
De B, Panua RS (2016) Performance and emission characteristics of diesel and vegetable oil blends in a direct-injection VCR engine. J Braz Soc Mech Sci Eng 38:633. https://doi.org/10.1007/s40430-015-0349-x
Xiumin Yu, Guo Z, He L, Dong W, Sun P, Shi W, Yaodong D, He F (2018) Effect of gasoline/n-butanol blends on gaseous and particle emissions from an SI direct injection engine. Fuel 229:1–10. https://doi.org/10.1016/j.fuel.2018.05.003
Zhuang Y, Qian Y, Hong G (2017) The effect of ethanol direct injection on knock mitigation in a gasoline port injection engine. Fuel 210:187–197. https://doi.org/10.1016/j.fuel.2017.08.060
Luo Y, Zhu L, Fang J, Zhuang Z, Guan C, Xia C, Xie X, Huang Z (2015) Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol–gasoline fuel. Appl Therm Eng 89:647–655. https://doi.org/10.1016/j.applthermaleng.2015.06.060
Smith P, Heywood J, Cheng W (2014) Effects of compression ratio on spark-ignited engine efficiency. SAE technical paper 2014-01-2599,. https://doi.org/10.4271/2014-01-2599
Boretti A (2013) Water injection in directly injected turbocharged spark ignition engines. Appl Therm Eng 52(1):62–68. https://doi.org/10.1016/j.applthermaleng.2012.11.016
Mingrui W, Sa NT, Turkson RF, Jinping L, Guanlun G (2017) Water injection for higher engine performance and lower emissions. J Energy Inst 90(2):285–299. https://doi.org/10.1016/j.joei.2015.12.003
Luigi T, Daniela T, Fabio B (2017) Development of a virtual calibration methodology for a downsized SI engine by using advanced valve strategies. Energy Procedia 126:923–930. https://doi.org/10.1016/j.egypro.2017.08.164
Carey C, McAllister M, Sandford M, Richardson S, Pierson S, Darnton N, Bredda S, Akehurst S, Brace C, Turner J, Pearson R, Luard N, Martinez-Botas R, Copeland C, Lewis M, Fernandes J (2011) Extreme engine downsizing. In: Innovations in fuel economy and sustainable road transport. Woodhead Publishing, pp. 135–147. https://doi.org/10.1533/9780857095879.4.161. ISBN 9780857092137
Baêta JGC, Pontoppidan M, Silva TRV (2015) Exploring the limits of a down-sized ethanol direct injection spark ignited engine in different configurations in order to replace high-displacement gasoline engines. Energy Convers Manag 105:858–871. https://doi.org/10.1016/j.enconman.2015.08.041
Venkateswarlu K, Murthy BSR, Subbarao VV (2016) An experimental investigation to study the effect of fuel additives and exhaust gas recirculation on combustion and emissions of diesel–biodiesel blends. J Braz Soc Mech Sci Eng 38:735. https://doi.org/10.1007/s40430-015-0376-7
De Serio D, de Oliveira A, Sodré JR (2017) Effects of EGR rate on performance and emissions of a diesel power generator fueled by B7. J Braz Soc Mech Sci Eng 39:1919. https://doi.org/10.1007/s40430-017-0777-x
Boretti A (2012) Towards 40% efficiency with BMEP exceeding 30bar in directly injected, turbocharged, spark ignition ethanol engines. Energy Convers Manag 57:154–166. https://doi.org/10.1016/j.enconman.2011.12.011
Bahri B, Aziz AA, Shahbakhti M, Said M, Farid M (2013) Ethanol fuelled HCCI engine: a review. World Acad Sci Eng Technol (WASET) 7(7):670–675
Viggiano A, Magi V (2012) A comprehensive investigation on the emissions of ethanol HCCI engines. Appl Energy 93:277–287. https://doi.org/10.1016/j.apenergy.2011.12.063
Martins M, Fischer I, Gusberti F (2016) Diesel exhaust heat recovery to promote HCCI of wet ethanol on dedicated cylinders. SAE technical paper 2016-36-0111. https://doi.org/10.4271/2016-36-0111.
Manente V, Johansson B, Tunestal P (2009) Characterization of partially premixed combustion with ethanol: EGR sweeps, low and maximum loads. In: Proceedings of the ASME 2009 internal combustion engine division spring technical conference. ASME 2009 internal combustion engine division spring technical conference, Milwaukee, 3–6 May 2009. ASME, pp 175–190. https://doi.org/10.1115/ICES2009-76165.
Kaiadi M, Johansson B, Lundgren M, Gaynor J (2013) Sensitivity analysis study on ethanol partially premixed combustion. SAE Int J Engines 6(1):120–131. https://doi.org/10.4271/2013-01-0269
Noh HK, No S-Y (2017) Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode: a review. Appl Energy 208:782–802. https://doi.org/10.1016/j.apenergy.2017.09.071
Pedrozo VB, May I, Guan W, Zhao H (2018) High efficiency ethanol-diesel dual-fuel combustion: a comparison against conventional diesel combustion from low to full engine load. Fuel 230:440–451. https://doi.org/10.1016/j.fuel.2018.05.034
Oliveira A, de Morais AM, Valente OS et al (2017) Combustion, performance and emissions of a diesel power generator with direct injection of B7 and port injection of ethanol. J Braz Soc Mech Sci Eng 39:1087. https://doi.org/10.1007/s40430-016-0667-7
Chen Z, Wang L, Zeng K (2019) A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol. Energy Convers Manag 192:11–19. https://doi.org/10.1016/j.enconman.2019.04.011
Acknowledgements
The authors acknowledge the Mobility Technology Center (CTM-UFMG) for investing in R&D of internal combustion engines fueled with ethanol, a renewable Brazilian energy matrix. Also, they give an eternal and special acknowledgment to Dr. Michael Pontoppidan, who largely contributed to this and other works and, unfortunately, passed away at the end of 2018.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Technical Editor: Mário Eduardo Santos Martins.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Malaquias, A.C.T., Netto, N.A.D., Filho, F.A.R. et al. The misleading total replacement of internal combustion engines by electric motors and a study of the Brazilian ethanol importance for the sustainable future of mobility: a review. J Braz. Soc. Mech. Sci. Eng. 41, 567 (2019). https://doi.org/10.1007/s40430-019-2076-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40430-019-2076-1
