High-accuracy tracking of piezoelectric positioning stage by using iterative learning controller plus PI control

  • Gang-feng YanEmail author
  • Hong Fang
  • Fei Meng
Technical Paper


Piezoelectric positioning stages as control system actuator are widely used in equipment drive. In this paper, according to the physical mechanism of the piezoelectric positioning stage control system, an approximate time-domain mathematical model is established for the selection of piezoelectric positioning stage control system. The least-squares method is used to identify the parameters of the model. The outputs of the pulse width signal of the obtained model are consistent with that of the actual system. Then, iterative learning controller plus proportional integral control based on frequency domain tools is designed according to the form of the model, the stability of the control approach and the selection of its parameters are discussed in detail. The experimental results demonstrate the successful implementation with good performance on the piezoelectric positioning stage.


Piezoelectric positioning stage System modeling Iterative learning control PI control 



  1. 1.
    Hansma PK, Schitter G, Fantner GE, Prater C (2006) High-speed atomic force microscopy. Science 314(5799):601–602CrossRefGoogle Scholar
  2. 2.
    Salapaka SM, Salapaka MV (2008) Scanning probe microscopy. IEEE Control Syst Mag 28(2):65–83MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tuma T, Sebastian A, Lygeros J, Pantazi A (2013) The four pillars of nanopositioning for scanning probe microscopy: the position sensor, the scanning device, the feedback controller, and the reference trajectory. IEEE Control Syst Mag 33(6):68–85MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lai LJ, Gu GY, Zhu LM (2012) Design and control of a decoupled two degree of freedom translational parallel micro-positioning stage. Rev Sci Instrum 83(4):045105CrossRefGoogle Scholar
  5. 5.
    Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control 131(6):061101CrossRefGoogle Scholar
  6. 6.
    Bhagat U, Shirinzadeh B, Tian Y, Zhang D (2013) Experimental analysis of laser interferometry based robust motion tracking control of a flexure-based mechanism. IEEE Trans Autom Sci Eng 10(2):267–275CrossRefGoogle Scholar
  7. 7.
    Yong YK, Moheimani SOR, Kenton BJ, Leang KK (2012) Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev Sci Instrum 83(12):121101CrossRefGoogle Scholar
  8. 8.
    Hu B, Yu H (2018) Optimal design and simulation of a microsuction cup integrated with a valveless piezoelectric pump for robotics. Shock Vib 2018:1–16Google Scholar
  9. 9.
    Tian Y, Zhang D, Shirinzadeh B (2011) Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis Eng 35(4):554–565CrossRefGoogle Scholar
  10. 10.
    Park G, Bement MT, Hartman DA, Smith RE, Farrar CR (2007) The use of active materials for machining processes: a review. Int J Mach Tools Manuf 47(15):2189–2206CrossRefGoogle Scholar
  11. 11.
    Gozen BA, Ozdoganlar OB (2012) Design and evaluation of a mechanical nanomanufacturing system for nanomilling. Precis Eng 36:19–30CrossRefGoogle Scholar
  12. 12.
    Sung BJ, Lee EW, Kim IS (2009) Displacement control of piezoelectric actuator using the PID controller and system identification method. In: Joint international conference on power system technology and IEEE power India conference IEEEGoogle Scholar
  13. 13.
    Chao CP et al (2011) Robust control design for precision positioning of a generic piezoelectric system with consideration of microscopic hysteresis effects.”. Microsyst Technol 17(5–7):1009–1023CrossRefGoogle Scholar
  14. 14.
    Chang-Li L et al (2016) Feed-forward control of stack piezoelectric actuator. Opt Precis Eng 24(9):2248–2254CrossRefGoogle Scholar
  15. 15.
    Liu D, Guo W, Wang W (2013) Second-order sliding mode tracking control for the piezoelectric actuator with hysteretic nonlinearity. J Mech Sci Technol 27(1):199–205CrossRefGoogle Scholar
  16. 16.
    (2009) Piezo Linear Stage-PLS8 Reference, PBA SYSTEMS Pte LtdGoogle Scholar
  17. 17.
    (2010) Mercury 3000 Smart Encoder Systems Reference, Celera Motion CompanyGoogle Scholar
  18. 18.
    Tao G, Lewis FL (2001) Adaptive control of nonsmooth dynamic systems. Springer, LondonCrossRefGoogle Scholar
  19. 19.
    Ahn H-S, Chen YQ, Moore KL (2007) Iterative learning control: brief survey and categorization. IEEE Trans Syst Man Cybern Part C (Appl Rev) 37(6):1099–1121CrossRefGoogle Scholar
  20. 20.
    Bristow DA, Tharayil M, Alleyne AG (2006) A survey of iterative learning control. IEEE Control Syst 26(3):96–114CrossRefGoogle Scholar
  21. 21.
    Norrlöf M, Gunnarsson S (2002) Time and frequency domain convergence properties in iterative learning control. Int J Control 75(14):1114–1126MathSciNetCrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringChengdu UniversityChengduChina

Personalised recommendations