Skip to main content
Log in

Circular motion analysis for a novel 4-DOF parallel kinematic machine

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 15 October 2019

This article has been updated

Abstract

In this paper, first a novel 4-DOF parallel kinematic machine with rotational capability around a horizontal axis is presented, and its kinematics are derived and reachable workspace is obtained. Then, an interpolation algorithm for circular motion generation of a novel 4-DOF parallel kinematic machine is proposed. The algorithm consisted of two steps: the rough interpolation in end effector space, and the fine interpolation in the actuator space. Further, the method is validated by simulation of a random circular path. Moreover, experiments are conducted by machining circular profiles at different locations of workspace with varying radius, and their chordal and radial errors were obtained by measurements in profile projector and fitting with least square function in MATLAB software. Obtained results indicated that the developed parallel mechanism is capable of generating accurate motions for machining tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Change history

  • 15 October 2019

    In the original publication of the article, the affiliation of the authors was incorrectly published. The corrected affiliation is given in this correction article.

References

  1. Lu Y, Hu B (2007) Analyzing kinematics and solving active/constrained forces of a 3SPU + UPR parallel manipulator. Mech Mach Theory 42(10):1298–1313. https://doi.org/10.1016/j.mechmachtheory.2006.11.002

    Article  MATH  Google Scholar 

  2. Singh Y, Vinoth V, Kiran YR, Mohanta JK, Mohan S (2015) Inverse dynamics and control of a 3-DOF planar parallel (U-shaped 3-PPR) manipulator. Robot Comput Integr Manuf 34:164–179

    Article  Google Scholar 

  3. Pierrot F, Nabat V, Company O, Krut S, Poignet P (2009) Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Trans Rob 25(2):213–224

    Article  Google Scholar 

  4. Liu S, Huang T, Mei J, Zhao X, Wang P, Chetwynd DG (2012) Optimal design of a 4-DOF SCARA type parallel robot using dynamic performance indices and angular constraints. J Mech Robot 4(3):031005–031010. https://doi.org/10.1115/1.4006743

    Article  Google Scholar 

  5. Dong G, Sun T, Song Y, Gao H, Lian B (2014) Mobility analysis and kinematic synthesis of a novel 4-DoF parallel manipulator. Robotica 34(5):1010–1025. https://doi.org/10.1017/S0263574714002021

    Article  Google Scholar 

  6. Guo S, Ye W, Qu H, Zhang D, Fang Y (2014) A serial of novel four degrees of freedom parallel mechanisms with large rotational workspace. Robotica 34(4):764–776. https://doi.org/10.1017/S0263574714001842

    Article  Google Scholar 

  7. Pierrot F, Company O (1999) H4: a new family of 4-dof parallel robots. In: 1999 IEEE/ASME international conference on advanced intelligent mechatronics. Proceedings. IEEE, pp 508–513

  8. Choi H-B, Company O, Pierrot F, Konno A, Shibukawa T, Uchiyama M (2003) Design and control of a novel 4-DOFs parallel robot H4. In: IEEE international conference on robotics and automation. Proceedings. ICRA’03. IEEE, pp 1185–1190

  9. Rolland L (1999) The manta and the kanuk: novel 4-dof parallel mechanisms for industrial handling. Proc ASME Dyn Syst Control Div IMECE 99:14–19

    Google Scholar 

  10. Briot S, Arakelian V, Guégan S (2008) Design and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator with high-load carrying capacity. J Mech Des 130(12):122303

    Article  Google Scholar 

  11. Lu Y, Shi Y, Huang Z, Yu J, Li S, Tian X (2009) Kinematics/statics of a 4-DOF over-constrained parallel manipulator with 3 legs. Mech Mach Theory 44(8):1497–1506. https://doi.org/10.1016/j.mechmachtheory.2008.12.001

    Article  MATH  Google Scholar 

  12. Briot S, Bonev IA (2010) Pantopteron-4: a new 3T1R decoupled parallel manipulator for pick-and-place applications. Mech Mach Theory 45(5):707–721. https://doi.org/10.1016/j.mechmachtheory.2009.07.007

    Article  MATH  Google Scholar 

  13. Gogu G (2007) Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology. Eur J Mech A Solids 26(2):242–269. https://doi.org/10.1016/j.euromechsol.2006.06.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Araujo-Gómez P, Mata V, Díaz-Rodríguez M, Valera A, Page A (2017) Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics 9(6):061004–061010. https://doi.org/10.1115/1.4037800

    Article  Google Scholar 

  15. Yang S, Sun T, Huang T (2017) Type synthesis of parallel mechanisms having 3T1R motion with variable rotational axis. Mech Mach Theory 109(Supplement C):220–230. https://doi.org/10.1016/j.mechmachtheory.2016.11.005

    Article  Google Scholar 

  16. Salgado O, Altuzarra O, Amezua E, Hernández A (2006) A parallelogram-based parallel manipulator for Schönflies motion. J Mech Des 129(12):1243–1250. https://doi.org/10.1115/1.2779898

    Article  Google Scholar 

  17. Masory O, Koren Y (1982) Reference-word circular interpolators for CNC systems. J Manuf Sci Eng 104(4):400–405

    Google Scholar 

  18. Suh S-H, Kang SK, Chung D-H, Stroud I (2008) Theory and design of CNC systems. Springer, Berlin

    Book  Google Scholar 

  19. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Berlin

    Google Scholar 

  20. Merlet J-P (2000) A generic trajectory verifier for the motion planning of parallel robots. J Mech Des 123(4):510–515. https://doi.org/10.1115/1.1401735

    Article  Google Scholar 

  21. Nenchev DN, Uchiyama M (1996) Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type singularities. In: 1996 IEEE international conference on robotics and automation. Proceedings. IEEE, pp 1864–1870

  22. Dasgupta B, Mruthyunjaya TS (1998) Singularity-free path planning for the Stewart platform manipulator. Mech Mach Theory 33(6):711–725. https://doi.org/10.1016/S0094-114X(97)00095-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Dash AK, Chen IM, Song Huat Y, Guilin Y (2003) Singularity-free path planning of parallel manipulators using clustering algorithm and line geometry. In: IEEE international conference on robotics and automation, vol 761. Proceedings. ICRA ‘03, 14–19 Sept 2003, pp 761–766. https://doi.org/10.1109/robot.2003.1241685

  24. Dash AK, Chen IM, Yeo SH, Yang G (2005) Workspace generation and planning singularity-free path for parallel manipulators. Mech Mach Theory 40(7):776–805. https://doi.org/10.1016/j.mechmachtheory.2005.01.001

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou H, Ting K-L (2005) Path generation with singularity avoidance for five-bar slider-crank parallel manipulators. Mech Mach Theory 40(3):371–384. https://doi.org/10.1016/j.mechmachtheory.2004.07.007

    Article  MATH  Google Scholar 

  26. Pugazhenthi S, Nagarajan T, Singaperumal M (2002) Optimal trajectory planning for a hexapod machine tool during contour machining. Proc Inst Mech Eng Part C J Mech Eng Sci 216(12):1247–1257

    Article  Google Scholar 

  27. Majou F, Wenger P, Chablat D (2007) Design of a 3 axis parallel machine tool for high speed machining: the Orthoglide. arXiv preprint arXiv:07051271

  28. Wang Y, Huang T, Gosselin CM (2004) Interpolation error prediction of a three-degree parallel kinematic machine. J Mech Des 126(5):932–937

    Article  Google Scholar 

  29. Kui-Jing Z, Jian-she G, Yong-Sheng Z (2005) Path control algorithms of a novel 5-DOF parallel machine tool. In: 2005 IEEE international conference mechatronics and automation, vol 1383, pp 1381–1385. https://doi.org/10.1109/icma.2005.1626755

  30. Li C, Yunfeng Z, Yongsheng Z (2007) Motion control algorithm of a 5-DOF parallel machine tool. In: IEEE international conference on robotics and biomimetics. ROBIO 2007, 15–18 Dec 2007, pp 2194–2199. https://doi.org/10.1109/robio.2007.4522510

  31. Shouwen F, Xiaobing W, Mingquan S, Hongzhong H (2007) Study on interpolation principle and method for 1PS + 4TPS type hybrid machine tool. In: Third international conference on natural computation. ICNC 2007, 24–27 Aug 2007, pp 124–129. https://doi.org/10.1109/icnc.2007.691

  32. Qi J-b, Gao T-h, Zhi J-z, Wang W (2007) The kinematics analysis of a novel 5-DOF series-parallel machine tool and study on its NC architecture. In: International conference on mechatronics and automation. ICMA 2007, 5–8 Aug 2007, pp 1328–1333. https://doi.org/10.1109/icma.2007.4303742

  33. Chalak Qazani M, Pedrammehr S, Nategh M (2014) A study on motion of machine tools’ hexapod table on freeform surfaces with circular interpolation. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-014-6264-y

    Article  Google Scholar 

  34. Koren Y, Lo CC, Shpitalni M (1993) CNC interpolators: algorithms and analysis. ASME Prod Eng Div Publ PED 64:83–92

    Google Scholar 

  35. Ni Y, Zhang Y, Sun K, Wang H, Sun Y (2016) Interpolation control algorithm for a three-RPS parallel spindle head. Proc Inst Mech Eng Part I J Syst Control Eng 230(7):661–671. https://doi.org/10.1177/0959651816645687

    Article  Google Scholar 

  36. Liu X-J, Wang J (2003) Some new parallel mechanisms containing the planar four-bar parallelogram. Int J Robot Res 22(9):717–732

    Article  Google Scholar 

  37. Jean-Pierre M (2012) Parallel robots, vol 74. Springer, Berlin

    MATH  Google Scholar 

  38. Zhao J, Feng Z, Chu F, Ma N (2013) Advanced theory of constraint and motion analysis for robot mechanisms. Academic Press, New York

    Google Scholar 

  39. Craig JJ (2005) Introduction to robotics: mechanics and control, vol 3. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  40. Hee-Byoung C, Konno A, Uchiyama M (2003) Closed-form solutions for the forward kinematics of a 4-DOFs parallel robot H4. In: 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003), vol 3313. Proceedings, 27–31 Oct 2003, pp 3312–3317. https://doi.org/10.1109/iros.2003.1249667

  41. Huang X, Liao Q, Wei S (2010) Closed-form forward kinematics for a symmetrical 6-6 Stewart platform using algebraic elimination. Mech Mach Theory 45(2):327–334. https://doi.org/10.1016/j.mechmachtheory.2009.09.008

    Article  MATH  Google Scholar 

  42. Jaafarzadeh N, Mahboubkhah M (2014) Design and analysis of workspace and singularity of a 4 degree of freedom parallel robot. Modares Mech Eng 14(8):28–36

    Google Scholar 

  43. Liu X-J, Wang J, Kim J (2005) Determination of the link lengths for a spatial 3-DOF parallel manipulator. J Mech Des 128(2):365–373. https://doi.org/10.1115/1.2159028

    Article  Google Scholar 

  44. Edwards CH (1990) Calculus and analytic geometry. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  45. Karimi D, Nategh MJ (2014) Kinematic nonlinearity analysis in hexapod machine tools: symmetry and regional accuracy of workspace. Mech Mach Theory 71:115–125. https://doi.org/10.1016/j.mechmachtheory.2013.09.007

    Article  Google Scholar 

  46. Karimi A, Masouleh MT, Cardou P (2014) Singularity-free workspace analysis of general 6-UPS parallel mechanisms via convex optimization. Mech Mach Theory 80:17–34. https://doi.org/10.1016/j.mechmachtheory.2014.04.005

    Article  Google Scholar 

  47. Wang J, Wang Z, Huang T, Whitehouse DJ (2002) Nonlinearity for a parallel kinematic machine tool and its application to interpolation accuracy analysis. Sci China Ser E-Technol Sci 45(1):97–105. https://doi.org/10.1360/02ye9012

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Mahboubkhah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Victor Juliano De Negri, D.Eng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhbari, S., Ghadimzadeh Alamdari, A. & Mahboubkhah, M. Circular motion analysis for a novel 4-DOF parallel kinematic machine. J Braz. Soc. Mech. Sci. Eng. 41, 215 (2019). https://doi.org/10.1007/s40430-019-1716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1716-9

Keywords

Navigation