Skip to main content
Log in

Two-dimensional rate-independent plasticity using the element-based finite volume method

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The element-based finite volume method (EbFVM) is well established in computational fluid dynamics; in the last decade, it has been extended to several areas of engineering and physics interest, such as electromagnetism, acoustics, and structural mechanics analysis with complex geometrical shapes. This paper describes the treatment of the conservative EbFVM approach for two-dimensional isotropic elastic–plastic rate-independent problems. In particular, we use plane strain and plane stress approaches upon incremental thermal and mechanical loads. In order to verify the performance of the EbFVM, numerical results are compared with a commercial simulator. Finally, from the present implementation and the comparisons performed, we can ensure that EbFVM makes accurate prediction as the traditional numerical approach commonly employed for the solution of mechanics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Voller VR (2000) Basic control volume finite element methods for fluids and solids, vol 1. World Scientific, Singapore

    MATH  Google Scholar 

  2. Zienkiewicz O, Taylor R (2000) The finite element method: solid mechanics, vol 2, 5th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  3. Demirdžić I, Martinović D (1993) Finite volume method for thermo-elastoplastic stress analysis. Comput Methods Appl Mech Eng 109(3–4):331–334. https://doi.org/10.1016/0045-7825(93)90085-C

    Article  MATH  Google Scholar 

  4. Maliska C (2004) Heat transfer and computational fluid mechanics. LTC, Florianópolis (in Portuguese)

    Google Scholar 

  5. Taylor G, Bailey C, Cross M (2003) A vertex-based finite volume method applied to non-linear material problems in computational solid mechanics. Int J Numer Methods Eng 56(4):507–529. https://doi.org/10.1002/nme.574

    Article  MATH  Google Scholar 

  6. Taylor G, Bailey C, Cross M (1995) Solution of the elastic/visco-plastic constitutive equations: a finite volume approach. Appl Math Model 19(12):746–760. https://doi.org/10.1016/0307-904X(95).455.00093-Y

    Article  MATH  Google Scholar 

  7. Zienkiewick O, Taylor R (1989) The finite element method: basic formulation and linear problems, vol 1. McGraw-Hill Book Company, Maidenhead

    Google Scholar 

  8. Bilbao S, Hamilton B (2017) Wave-based room acoustics simulation: explicit/implicit finite volume modeling of viscothermal losses and frequency-dependent boundaries. J Audio Eng Soc 65(1/2):78–89. https://doi.org/10.17743/jaes.2016.0057

    Article  Google Scholar 

  9. Slone A, Bailey C, Cross M (2003) Dynamic solid mechanics using finite volume methods. Appl Math Model 27(2):69–87. https://doi.org/10.1016/S0307-904X(02)00060-4

    Article  MATH  Google Scholar 

  10. Zhang B, Xu C-L, Wang S-M (2017) Generalized source finite volume method for radiative transfer equation in participating media. J Quant Spectrosc Radiat Transf 189:189–197. https://doi.org/10.1016/j.jqsrt.2016.11.025

    Article  Google Scholar 

  11. Fernandes BRB, Marcondes F, Sepehrnoori K (2013) Investigation of several interpolation functions for unstructured meshes in conjunction with compositional reservoir simulation. Numer Heat Transf Part A Appl 64(12):974–993. https://doi.org/10.1080/10407782.2013.812006

    Article  Google Scholar 

  12. Patankar SV (1980) Numerical heat transfer and fluid flow: computational methods in mechanics and thermal science, vol 1. CRC Press, Boca Raton

    Google Scholar 

  13. Baliga B, Patankar S (1980) A new finite-element formulation for convection diffusion problems. Numer Heat Transf 3(4):393–409. https://doi.org/10.1080/01495728008961767

    Article  Google Scholar 

  14. Filippini G, Maliska C, Vaz M (2014) A physical perspective of the element-based finite volume method and FEM-Galerkin methods within the framework of the space of finite elements. Int J Numer Meth Eng 98(1):24–43. https://doi.org/10.1002/nme.4618

    Article  MathSciNet  MATH  Google Scholar 

  15. Wheel M (1996) A geometrically versatile finite volume formulation for plane elastostatic stress analysis. J Strain Anal Eng Design 31(2):111–116

    Article  Google Scholar 

  16. Woodward CS, Dawson CN (2000) Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37(3):701–724

    Article  MathSciNet  Google Scholar 

  17. Forsyth PA, Kropinski M (1997) Monotonicity considerations for saturated unsaturated subsurface flow. SIAM J Sci Comput 18(5):1328–1354

    Article  MathSciNet  Google Scholar 

  18. Bause M, Knabner P (2004) Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27(6):565–581

    Article  Google Scholar 

  19. Srivastava R, Yeh T-CJ (1992) A three-dimensional numerical model for water flow and transport of chemically reactive solute through porous media under variably saturated conditions. Adv Water Resour 15(5):275–287

    Article  Google Scholar 

  20. Jasak H, Weller H (2000) Application of the finite volume method and unstructured meshes to linear elasticity. Int J Numer Meth Eng 48(2):267–287. https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2%3c267:AID-NME884%3e3.0.CO2-Q

    Article  MATH  Google Scholar 

  21. Fallah N, Bailey C, Cross M, Taylor G (2000) Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis. Appl Math Model 24(7):439–455. https://doi.org/10.1016/S0307-904X(99)00047-5

    Article  MATH  Google Scholar 

  22. Moczo P, Robertsson JO, Eisner L (2007) The finite-difference time-domain method for modeling of seismic wave propagation. Adv Geophys 48:421–516

    Article  Google Scholar 

  23. Verzicco R, Orlandi P (1996) A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J Comput Phys 123(2):402–414

    Article  MathSciNet  Google Scholar 

  24. Ryskin G, Leal L (1984) Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique. J Fluid Mech 148:1–17

    Article  Google Scholar 

  25. Suliman R, Oxtoby OF, Malan A, Kok S (2014) An enhanced finite volume method to model 2d linear elastic structures. Appl Math Model 38(7):2265–2279

    Article  MathSciNet  Google Scholar 

  26. Marcondes F, Sepehrnoori K (2010) An element-based finite-volume method approach for heterogeneous and anisotropic compositional reservoir simulation. J Petrol Sci Eng 73(1):99–106. https://doi.org/10.1016/j.petrol.2010.05.011

    Article  Google Scholar 

  27. Winslow AM (1966) Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh. J Comput Phys 1(2):149–172. https://doi.org/10.1016/0021-9991(66)90001-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Schneider G, Zedan M (1983) Control-volume-based finite element formulation of the heat conduction equation. Spacecr Therm Control Design Oper Prog Astronaut Aeronaut 86:305–327

    Google Scholar 

  29. Fryer YD, Bailey C, Cross M, Lai C-H (1991) A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh. Appl Math Model 15(11–12):639–645. https://doi.org/10.1016/S0307-904X(09)81010-X

    Article  MATH  Google Scholar 

  30. Bailey C, Cross M (1995) A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh. Int J Numer Methods Eng 38(10):1757–1776. https://doi.org/10.1002/nme.1620381010

    Article  MATH  Google Scholar 

  31. Idelsohn SR, Oñate E (1994) Finite volumes and finite elements: two good friends. Int J Numer Methods Eng 37(19):3323–3341. https://doi.org/10.1002/nme.1620371908

    Article  MATH  Google Scholar 

  32. Vaz M, Muñoz-Rojas PA, Filippini G (2009) On the accuracy of nodal stress computation in plane elasticity using finite volumes and finite elements. Comput Struct 87(17):1044–1057. https://doi.org/10.1016/j.compstruc.2009.05.007

    Article  Google Scholar 

  33. Demirdžić I, Muzaferija S (1994) Finite volume method for stress analysis in complex domains. Int J Numer Methods Eng 37(21):3751–3766. https://doi.org/10.1002/nme.1620372110

    Article  MATH  Google Scholar 

  34. de Souza Neto EA, Peric D, Owen DR (2011) Computational methods for plasticity: theory and applications. Wiley, New York

    Google Scholar 

  35. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7. Springer, Berlin

    MATH  Google Scholar 

  36. Crisfield MA, Remmers JJ, Verhoosel CV et al (2012) Nonlinear finite element analysis of solids and structures. Wiley, New York

    MATH  Google Scholar 

  37. Kim N-H (2014) Introduction to nonlinear finite element analysis. Springer, Berlin

    Google Scholar 

  38. Logan D (2002) First course in finite element analysis. Brooks/Cole, Boston

    Google Scholar 

Download references

Acknowledgements

The first and second authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel) and CNPq (the National Council for Scientific and Technological Development of Brazil), respectively, for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Marcondes.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cassia Lima Pimenta, P.V., Marcondes, F. Two-dimensional rate-independent plasticity using the element-based finite volume method. J Braz. Soc. Mech. Sci. Eng. 41, 142 (2019). https://doi.org/10.1007/s40430-019-1641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1641-y

Keywords

Navigation