Advertisement

A G/XFEM approximation space based on the enrichment of rational polynomials to model free and forced vibration in elastic isotropic Mindlin–Reissner plates

  • Oscar Alfredo Garcia de Suarez
  • Rodrigo RossiEmail author
Technical Paper
  • 37 Downloads

Abstract

The aim of this paper is to show the influence of a devised approximation space in obtaining natural frequencies, especially relatively high ones, and in the prediction of the undamped dynamic behavior produced by impulsive forces in plates. To achieve this goal, it is proposed to build an approximation space within the G/XFEM context. This space is based on the partition of unity family of rational polynomials which can, preserved some conditions under the mesh, generate shape functions of high regularity. The PU shape functions are then enriched using monomials defined on a normalized local coordinate system built at the nodes of the mesh. The proposed numerical framework is assessed by comparisons with analytical and reference (numerical) solutions, as well as with high-order \(C^{0}\) FEM-Lagrange predictions.

Keywords

Free vibrations Forced vibrations G/XFEM Rational polynomials Plates 

Notes

Acknowledgements

The author Rodrigo Rossi wishes to acknowledge the support of CNPq, Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico of Brazil. Grant No. 306058/2018-9.

References

  1. 1.
    Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201–204:91–111.  https://doi.org/10.1016/j.cma.2011.09.012 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bathe K (1996) Finite element procedures. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  3. 3.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256.  https://doi.org/10.1002/nme.1620370205 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mat Sci Eng 17(4):043001.  https://doi.org/10.1088/0965-0393/17/4/043001 CrossRefGoogle Scholar
  5. 5.
    Cottrell J, Hughes TJR, Reali A, Sangalli G (2007a) Isogeometric discretizations in structural dynamics and wave propagation. In: Proceedings of the ECOMAS thematic conference, pp 1–14Google Scholar
  6. 6.
    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41–43):5257–5296.  https://doi.org/10.1016/j.cma.2005.09.027 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cottrell JA, Hughes TJR, Reali A (2007b) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196(41–44):4160–4183.  https://doi.org/10.1016/j.cma.2007.04.007 CrossRefzbMATHGoogle Scholar
  8. 8.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis—toward integration of CAD and FEA. Wiley, HobokenCrossRefGoogle Scholar
  9. 9.
    Dhatt G, Touzot G (1984) The finite element method displayed. A Wiley-Interscience publication. Wiley, HobokenzbMATHGoogle Scholar
  10. 10.
    Dolbow J, Mos N, Belytschko T (2000) Modeling fracture in Mindlin–Reissner plates with the extended finite element method. Int J Solids Struct 37(48):7161–7183.  https://doi.org/10.1016/S0020-7683(00)00194-3 CrossRefzbMATHGoogle Scholar
  11. 11.
    Duarte CA, Babuška I (2002) Mesh-independent p-orthotropic enrichment using the generalized finite element method. Int J Numer Methods Eng 55(12):1477–1492.  https://doi.org/10.1002/nme.557 CrossRefzbMATHGoogle Scholar
  12. 12.
    Duarte CA, Oden JT (1996) An h–p adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4):237–262.  https://doi.org/10.1016/S0045-7825(96)01085-7 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232.  https://doi.org/10.1016/S0045-7949(99)00211-4 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dym CL, Shames IH (2013) Solid mechanics: a variational approach, Augmented edn. Springer, Berlin.  https://doi.org/10.1007/978-1-4614-6034-3 CrossRefzbMATHGoogle Scholar
  15. 15.
    Ferreira A, Roque C, Jorge R (2005) Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Comput Methods Appl Mech Eng 194(39):4265–4278.  https://doi.org/10.1016/j.cma.2004.11.004 CrossRefzbMATHGoogle Scholar
  16. 16.
    Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304.  https://doi.org/10.1002/nme.2914 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Garcia OA, Fancello EA, de Mendona PTR (2009) Developement in the application of the generalized finite element method to thick shell problem. Comput Mech 44:669–682.  https://doi.org/10.1007/s00466-009-0396-1 CrossRefGoogle Scholar
  18. 18.
    Gu YT, Liu GR (2001) A meshless local Petrov–Galerkin (MLPG) method for free and foreced vibration. Comput Mech 27:188–198CrossRefGoogle Scholar
  19. 19.
    Gupta V, Duarte CA, Babuška I, Banerjee U (2013) A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng 266:23–39.  https://doi.org/10.1016/j.cma.2013.07.010 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hashemi SH, Arsanjani M (2005) Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int J Solids Struct 42(3):819–853.  https://doi.org/10.1016/j.ijsolstr.2004.06.063 CrossRefzbMATHGoogle Scholar
  21. 21.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover civil and mechanical engineering series. Dover Publications, MineolaGoogle Scholar
  22. 22.
    Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput Methods Appl Mech Eng 272:290–320.  https://doi.org/10.1016/j.cma.2013.11.012 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Liew KL, Wang J, Ng TY, Tan MJ (2004) Free vibration and buckling analysis of shear-deformable plates based and FSDT meshfree method. J Sound Vib 276:997–1017CrossRefGoogle Scholar
  24. 24.
    Liu GR, Chen XL (2001) A mesh-free method for static and free vibration analysis of thin plates of complicated shape. J Sound Vib 241(5):839–855.  https://doi.org/10.1006/jsvi.2000.3330 CrossRefGoogle Scholar
  25. 25.
    Liu GR, Zhao X, Dai KY, Zhong ZH, Li GY, Han X (2008) Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method. Compos Sci Technol 68:354–366.  https://doi.org/10.1016/j.compscitech.2007.07.014 CrossRefGoogle Scholar
  26. 26.
    Liu L, Liu GR, Tan VBC (2002) Element free method for static and free vibration analysis of spatial thin shell structures. Comput Method Appl Mech Eng 191:5923–5942CrossRefGoogle Scholar
  27. 27.
    Malekan M, Barros F, da Silva Pitangueira RL, Alves PD, Penna SS (2017) A computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditions. Eng Comput 34(3):988–1019.  https://doi.org/10.1108/EC-02-2016-0050 CrossRefGoogle Scholar
  28. 28.
    Malekan M, Barros FB, Pitangueira RL (2018) Fracture analysis in plane structures with the two-scale G/XFEM method. Int J Solids Struct 155:65–80CrossRefGoogle Scholar
  29. 29.
    Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314.  https://doi.org/10.1016/S0045-7825(96)01087-0 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefGoogle Scholar
  31. 31.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318.  https://doi.org/10.1007/BF00364252 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Roque CMC, Ferreira AJM, Jorge RMN (2006) Free vibrations analysis of composite and sandwich by trigonometric layerwise deformation theory and radial basis function. J Sandw Struct Mater 8:497–515.  https://doi.org/10.1177/1099636206065873 CrossRefGoogle Scholar
  33. 33.
    Strang WG, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall series in automatic computation. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  34. 34.
    Suarez OAG, Rossi R, da Silva CRA Jr (2012) Enrichment of a rational polynomial family of shape functions with regularity \(C^{k},\, k=0,2,4,\ldots\): applications in axisymmetric plates and shells. Eng Comput 29(7–8):636–660CrossRefGoogle Scholar
  35. 35.
    Surana KS, Ahmadi AR, Reddy JN (2002) The k-version of finite element method for self-adjoint operators in BVP. Int J Comput Eng Sci 03(02):155–218.  https://doi.org/10.1142/S1465876302000605 CrossRefGoogle Scholar
  36. 36.
    Surana KS, Reddy JN, Allu S (2007) The k-version of finite element method for initial value problems: mathematical and computational framework. Int J Comput Methods Eng Sci Mech 8(3):123–136.  https://doi.org/10.1080/15502280701252321 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New YorkzbMATHGoogle Scholar
  38. 38.
    Wang C, Wang C (2013) Structural vibration: exact solutions for strings, membranes, beams, and plates. CRC Press, Boca RatonCrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Engenharia MecânicaUniversidade de Caxias do SulCaxias do SulBrazil
  2. 2.Departamento de Engenharia MecânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations