Skip to main content
Log in

Lower gamma band in the classification of left and right elbow movement in real and imaginary tasks

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this article, the activity of lower gamma band was used to classify right and left elbow movements performed from real and imaginary tasks in two different cognitive states: the preparation and the movement execution. Discriminability maps were used both to generalize the signal behavior of all the volunteers and to select time intervals of high discrimination among classes. The features extracted from chosen intervals were tested in eight different classification algorithms. To improve classes discrimination, LDA was used for dimensional reduction. Algorithms were tested using a fivefold cross-validation. The results showed similar signal activity for both real and imaginary actions, obtaining closer classification responses among all volunteers. The tested algorithm gave a mean classification success up to 70%, with minor differences between the type of task and the cognitive state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn M, Ahn S, Hong JH, Cho H, Kim K, Kim BS, Chang JW, Jun SC (2013) Gamma band activity associated with bci performance: simultaneous meg/eeg study. Front Hum Neurosci 7:848

    Article  Google Scholar 

  2. Akrami A, Solhjoo S, Motie-Nasrabadi A, Hashemi-Golpayegani MR (2005) Eeg-based mental task classification: linear and nonlinear classification of movement imagery. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual, pp 1–4

  3. Aoki F, Fetz E, Shupe L, Lettich E, Ojemann G (1999) Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol 110(3):524–537

    Article  Google Scholar 

  4. Banville H, Falk T (2016) Recent advances and open challenges in hybrid brain–computer interfacing: a technological review of non-invasive human research. Brain-Computer Interfaces 3(1):9–46

    Article  Google Scholar 

  5. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2):241–248

    Article  Google Scholar 

  6. Besserve M, Jerbi K, Laurent F, Baillet S, Martinerie J, Garnero L (2007) Classification methods for ongoing eeg and meg signals. Biol Res 40(4):415–437

    Article  Google Scholar 

  7. Bishop CM (2006) Pattern recognition & machine learning. Springer, Berlin

    MATH  Google Scholar 

  8. Blankertz B, Lemm S, Treder M, Haufe S, Müller KR (2011) Single-trial analysis and classification of erp componentsa tutorial. NeuroImage 56(2):814–825

    Article  Google Scholar 

  9. Cassim F, Szurhaj W, Sediri H, Devos D, Bourriez JL, Poirot I, Derambure P, Defebvre L, Guieu JD (2000) Brief and sustained movements: differences in event-related (de) synchronization (erd/ers) patterns. Clin Neurophysiol 111(11):2032–2039

    Article  Google Scholar 

  10. Frolov A, Biryukova E, Bobrov P, Mokienko O, Platonov A, Pryanichnikov V, Chernikova L (2013) Principles of neurorehabilitation based on the brain–computer interface and biologically adequate control of the exoskeleton. Hum Physiol 39(2):196–208

    Article  Google Scholar 

  11. Frolov A, Húsek D, Bobrov P, Mokienko O, Tintera J (2013) Sources of electrical brain activity most relevant to performance of brain–computer interface based on motor imagery. In: Brain–computer interface systems-recent progress and future prospects, pp 175–193

  12. Gandhi T, Panigrahi BK, Anand S (2011) A comparative study of wavelet families for eeg signal classification. Neurocomputing 74(17):3051–3057

    Article  Google Scholar 

  13. Ginter J Jr, Blinowska K, Kamin M, Durka P, Pfurtscheller G, Neuper C et al (2005) Propagation of eeg activity in the beta and gamma band during movement imagery in humans. Methods Arch 44(1):106–113

    Google Scholar 

  14. Glassman EL (2005) A wavelet-like filter based on neuron action potentials for analysis of human scalp electroencephalographs. IEEE Trans Biomed Eng 52(11):1851–1862

    Article  Google Scholar 

  15. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Article  Google Scholar 

  16. Jeon Y, Namb CS, Kim YJ, Whang MC (2011) Event-related (de)synchronization (erd/ers) during motor imagery tasks: implications for brain–computer interfaces. Int J Ind Ergon 41:428–436

    Article  Google Scholar 

  17. Khan YU, Sepulveda F (2010) Brain-computer interface for single-trial eeg classification for wrist movement imagery using spatial filtering in the gamma band. IET Signal Process 4(5):510–517

    Article  Google Scholar 

  18. Lalitharatne TD, Yoshino A, Hayashi Y, Teramoto K, Kiguchi K (2012) Toward eeg control of upper limb power-assist exoskeletons: a preliminary study of decoding elbow joint velocities using eeg signals. In: 2012 international symposium on micro-nano mechatronics and human science (MHS). IEEE, pp 421–424

  19. Lana EP, Adorno BV, Tierra-Criollo CJ (2015) Detection of movement intention using eeg in a human–robot interaction environment. Res Biomed Eng 31(4):285–294

    Article  Google Scholar 

  20. Lemm S, Blankertz B, Dickhaus T, Müller KR (2011) Introduction to machine learning for brain imaging. Neuroimage 56(2):387–399

    Article  Google Scholar 

  21. Mensh BD, Werfel J, Seung HS (2004) Bci competition 2003-data set ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans Biomed Eng 51(6):1052–1056

    Article  Google Scholar 

  22. Miller KJ, Shenoy P, Den Nijs M, Sorensen LB, Rao RP, Ojemann JG (2008) Beyond the gamma band: the role of high-frequency features in movement classification. IEEE Trans Biomed Eng 55(5):1634–1637

    Article  Google Scholar 

  23. Mirnaziri M, Rahimi M, Alavikakhaki S, Ebrahimpour R (2013) Using combination of \(\mu \), \(\beta \) and \(\gamma \) bands in classification of eeg signals. Basic Clin Neurosci 4(1):76

    Google Scholar 

  24. Mueller-Putz G, Scherer R, Pfurtscheller G, Neuper C (2010) Temporal coding of brain patterns for direct limb control in humans. Front Neurosci 4:34

    Google Scholar 

  25. Palaniappan R (2006) Utilizing gamma band to improve mental task based brain–computer interface design. IEEE Trans Neural Syst Rehabil Eng 14(3):299–303

    Article  Google Scholar 

  26. Pfurtscheller G, da Silva FL (1999) Event-related eeg/meg synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  Google Scholar 

  27. Pfurtscheller G, Neuper C, Kalcher J (1993) 40-Hz oscillations during motor behavior in man. Neurosci Lett 164(1):179–182

    Article  Google Scholar 

  28. Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol 114(7):1226–1236

    Article  Google Scholar 

  29. Pfurtscheller G, Brunner C, Schlo A, da Silva FL (2006) Mu rhythm (de)synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage 31(153):159

    Google Scholar 

  30. Pineda JA (2005) The functional significance of mu rhythms: translating seeing and hearing into doing. Brain Res Rev 50(1):57–68

    Article  Google Scholar 

  31. Ramos-Murguialday A, Birbaumer N (2015) Brain oscillatory signatures of motor tasks. J Neurophysiol 113(10):3663–3682

    Article  Google Scholar 

  32. Ravi K, Palaniappan R (2006) Neural network classification of late gamma band electroencephalogram features. Soft Comput 10(2):163–169

    Article  Google Scholar 

  33. Robinson N, Vinod AP, Ang KK, Tee KP, Guan CT (2013) Eeg-based classification of fast and slow hand movements using wavelet-csp algorithm. IEEE Trans Biomed Eng 60(8):2123–2132

    Article  Google Scholar 

  34. Roy R, Mahadevappa M, Kumar C (2016) Trajectory path planning of eeg controlled robotic arm using ga. Procedia Comput Sci 84:147–151

    Article  Google Scholar 

  35. Ryun S, Kim JS, Jeon E, Chung CK (2017) Movement classification using ecog high-gamma powers from human sensorimotor area during active movement. In: 2017 5th international winter conference on brain-computer interface (BCI). IEEE, pp 96–98

  36. Salari N, Rose M (2013) A brain–computer-interface for the detection and modulation of gamma band activity. Brain Sci 3(4):1569–1587

    Article  Google Scholar 

  37. Salvaris M, Sepulveda F (2010) Classification effects of real and imaginary movement selective attention tasks on a p300-based brain–computer interface. J Neural Eng 7(5):056,004

    Article  Google Scholar 

  38. Scherer R, Zanos SP, Miller KJ, Rao RP, Ojemann JG (2009) Classification of contralateral and ipsilateral finger movements for electrocorticographic brain–computer interfaces. Neurosurg Focus 27(1):E12

    Article  Google Scholar 

  39. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR (2015) High and low gamma eeg oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. Neuroimage 112:318–326

    Article  Google Scholar 

  40. Sim KS, Kiang KDT, You LZ (2016) Eeg controlled wheelchair. In: MATEC web of conferences, EDP sciences, vol 51

  41. Soekadar SR, Witkowski M, Vitiello N, Birbaumer N (2015) An eeg/eog-based hybrid brain-neural computer interaction (bnci) system to control an exoskeleton for the paralyzed hand. Biomed Eng/Biomed Tech 60(3):199–205

    Google Scholar 

  42. Subasi A, Gursoy MI (2010) Eeg signal classification using pca, ica, lda and support vector machines. Expert Syst Appl 37(12):8659–8666

    Article  Google Scholar 

  43. Szurhaj W, Bourriez JL, Kahane P, Chauvel P, Mauguière F, Derambure P (2005) Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex. Eur J Neurosci 21(5):1223–1235

    Article  Google Scholar 

  44. Theodoridis S, Pikrakis A, Koutroumbas K, Cavouras D (2010) Introduction to pattern recognition: a matlab approach. Academic Press, New York

    Google Scholar 

  45. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  46. Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24(1):128–139

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FINEP, CNPq, FAPERJ, Fundao COPPETEC and DIPPG/CEFET-RJ for supporting our works, the students Edwiges Beatriz Coimbra de Souza e Aline Macedo Rocha Rodriguez for helping in the EEG data acquisition, and Marco Vinicio Chiorri for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Veslin.

Additional information

Technical Editor Estevam Barbosa Las Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veslin, E.Y., Dutra, M.S., Bevilacqua, L. et al. Lower gamma band in the classification of left and right elbow movement in real and imaginary tasks. J Braz. Soc. Mech. Sci. Eng. 41, 91 (2019). https://doi.org/10.1007/s40430-019-1585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1585-2

Keywords

Navigation