Skip to main content
Log in

Turbulent impingement jet heat transfer on concave surfaces for aeronautical applications

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Turbulent impingement jet heat transfer on concave surfaces has been employed in different engineering applications, e.g., aviation industry. In the aircraft anti-icing systems, hot air from the engine compressor impinges on the inside surface of the leading edge through small drilled holes, configuring the so-called piccolo tube system. A critical aspect in the design of such system is the prediction of heat transfer impinging jets from the piccolo tube. The correct evaluation of the heat transfer rate in such devices is of great interest to optimize both the anti-icing performance and the hot-air bleeding from the high-pressure compressor. Therefore, the present study develops a parametric study of the impingement jet flow on concave surfaces employing the CFD tool. The main goal is to determine the effect of the jet Mach number on this heat transfer mechanism. The present results also showed that at lower H/d conditions, i.e., lower jet-to-impinging surface distances, the temperature field exhibits a more efficient heating process inside the domain, resulting in greater Nusselt number values. A correlation taking into account geometric parameters such as the jet-to-jet spacing and the jet-to-impinging surface distance and jet Mach number is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

c :

Sound velocity

d :

Jet diameter

H :

Jet-to-impinging surface distance

h(x,y) :

Local convection heat coefficient

h ave :

Average convection heat coefficient

k :

Air thermal conductivity

Ma :

Mach number = V/c

Nu(x,y) :

Nusselt number = h(x,y)d/k

Nu ave :

Average Nusselt number

p :

Pressure

q w :

Impinging surface local heat flux

T w :

Impinging surface wall temperature

T jet :

Jet inlet static temperature

V :

Jet velocity at the exit of the piccolo tube

W :

Jet-to-jet spanwise distance

x :

x coordinate

y :

y coordinate

ρ :

Air density

μ :

Air dynamic viscosity

References

  1. Oztekin E, Aydın O, Avcı M (2012) Hydrodynamics of a turbulent slot jet flow impinging, on a concave surface. Int Commun Heat Mass Transf 39:1631–1638

    Article  Google Scholar 

  2. Zuckerman N, Lior N (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Transf 39:565–631

    Article  Google Scholar 

  3. Beitelmal H, Saad MA, Patel CD (2000) The effect of inclination on the heat transfer between a flat surface and impinging two-dimensional air jet. Int J Heat Flow 21:156–163

    Article  Google Scholar 

  4. Chung YM, Luo KH, Sandham ND (2002) Numerical study of momentum and heat transfer in unsteady impinging jets. Heat Fluid Flow 23:592–600

    Article  Google Scholar 

  5. Fregeau M, Saeed F, Paraschicoiu I (2005) Numerical heat transfer correlation for array of hot-air jets impinging on 3-dimensional concave surface. J Aircraft 42:665–670

    Article  Google Scholar 

  6. Brown JM, Raghunathan S, Watterson JK, Linton AJ, Riordon D (2002) Heat transfer correlation for anti-icing systems. J Aircraft 39:65–70

    Article  Google Scholar 

  7. Wright WB (2004) An evaluation of jet impingement heat transfer correlations for piccolo tube application. In: 42nd AIAA aerospace sciences meeting and exhibit, AIAA, pp 4153–4162

  8. Ma H, Chen W, Zhang D (2012) Numerical investigation of engine inlet vane hot-air anti-icing system with surface air film. Int J Modern Phys Conf Ser 19:331–340

    Article  Google Scholar 

  9. Castro TP, Andrade CR, Zaparoli EL (2014) Mach number effect on the heat transfer mechanism of aircraft anti-icing systems. Int Rev Mech Eng 8:547–554

    Google Scholar 

  10. Oztekin E, Aydın O, Avcı M (2013) Heat transfer in a turbulent slot jet flow impinging on concave surfaces. Int Commun Heat Mass Transf 44:77–82

    Article  Google Scholar 

  11. Civil Aviation Authority (CAA) of New Zealand (2000) Aircraft icing handbook, p 108. https://www.caa.govt.nz/safety_info/GAPs/Aircraft_Icing_Handbook.pdf

  12. Moir I, Seabridge A (2001) Aircraft systems: mechanical, electrical, and avionics, subsystems integration. AIAA education series. Professional Engineering Publishing, London

    Google Scholar 

  13. Ingole SB, Sundaram KK (2012) Review of experimental investigation in heat transfer for jet impingement cooling. Int Rev Mech Eng 6:346–356

    Google Scholar 

  14. Dewan A, Gupt DP, Sanghi S (2013) Enhancement of heat transfer through jet impingement by using detached ribs. Int Rev Mech Eng 7:308–317

    Google Scholar 

  15. Goldstein RJ, Timmers JF (1982) Visualization of heat transfer from arrays of impinging jets. Int J Heat Mass Transf 25:1857–1868

    Article  Google Scholar 

  16. Huber AM, Viskanta R (1994) Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets. Int J Heat Mass Transf 37:2859–2869

    Article  Google Scholar 

  17. San JY, Lai MD (2001) Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets. Int J Heat Mass Transf 44:3997–4007

    Article  Google Scholar 

  18. Brevet P, Dejeu C, Dorignac E, Jolly M, Vullierme JJ (2002) Heat transfer to a row of impinging jets in consideration of optimization. Int J Heat Mass Transf 45:4191–4200

    Article  Google Scholar 

  19. Lee J, Lee SJ (1999) Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Exp Heat Transf 12:137–156

    Article  Google Scholar 

  20. Hannat R, Morency F (2014) Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. J Aircraft. https://doi.org/10.2514/1.c032078

    Article  Google Scholar 

  21.  Gardon R, Cobonpue J (1961) Heat transfer between a flat plate and jets of air impinging on it. Int Dev Heat Transf ASME, New York, pp 454–460. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730016200.pdf

  22. Bu X, Peng L, Lin G, Bai L, Wen D (2016) Jet impingement heat transfer on a concave surface in a wing leading edge: experimental study and correlation development. Exp Thermal Fluid Sci 78:199–207

    Article  Google Scholar 

  23. Brevet P, Dorignac E, Vullierme JJ (2001) Mach number effect on jet impingement heat transfer. Ann N Y Acad Sci 934:409–416

    Article  Google Scholar 

  24. Park J, Goodro M, Ligrani P, Fox M, Moon HK (2006) Separate effects of Mach number and Reynolds number on jet array impingement heat transfer. J Turbomach 129(2):269–280

    Article  Google Scholar 

  25. Vinze R, Chandel S, Limaye MD, Prabhu SV (2016) Effect of compressibility and nozzle configuration on heat transfer by impinging air jet over a smooth plate. Appl Thermal Eng 101:293–307

    Article  Google Scholar 

  26. Limaye MD, Vedula RP, Prabhu SV (2010) Local heat transfer distribution on a flat plate impinged by a compressible round air jet. Int J Thermal Sci 49(11):2157–2168

    Article  Google Scholar 

  27. Zhou Y, Lin G, Bu X, Bai L, Wen D (2017) Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. Chin J Aeronaut 30(2):586–594

    Article  Google Scholar 

  28. Yang B, Chang S, Wu H, Zhao Y, Leng M (2017) Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface. Appl Thermal Eng 127:473–483

    Article  Google Scholar 

  29. Hadipour A, Zargarabadi MR (2018) Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances. Appl Thermal Eng 138:534–541

    Article  Google Scholar 

  30. Lombardo D (1993) Advanced aircraft systems, 1st edn. McGraw-Hill Inc, New York, p 359

    Google Scholar 

  31. ANSYS/FLUENT Inc. (2010) User’s guide Manual, 13.0 version

  32. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics—the finite method. Pearson, Prentice Hall

    Google Scholar 

  33. Argyropoulos CD, Markatos NC (2015) Recent advances on the numerical modelling of turbulent flows. Appl Math Model 39:693–732

    Article  MathSciNet  Google Scholar 

  34. Ströher GR, Zaparoli EL, Andrade CR (2013) Parabolic modeling of the pultrusion process with thermal property variation. Int Commun Heat Mass Transf 42:32–37

    Article  Google Scholar 

  35. Aillaud P, Duchaine F, Gicquel LYM, Didorally S (2016) Secondary peak in the Nusselt number distribution of impinging jet flows: a phenomenological analysis. Phys Fluids 28:095110

    Article  Google Scholar 

  36. Lee DH, Chung YS, Won SY (1999) The effect of concave surface curvature on heat transfer from a fully developed round impinging jet. Int J Heat Mass Transf 42:2489–2497

    Article  Google Scholar 

  37. Ying Z, Guiping L, Xueqin B, Lizhan B, Dongsheng W (2017) Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. Chin J Aeronaut 30(2):586–594

    Article  Google Scholar 

  38. Frosell T, Fripp M, Gutmark E (2018) Dynamics of the impingement region of a circular turbulent jet. Exp Thermal Fluid Sci 91:399–409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia R. Andrade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: André Cavalieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salcedo, S.A.G., da Silva, A.F.G. & Andrade, C.R. Turbulent impingement jet heat transfer on concave surfaces for aeronautical applications. J Braz. Soc. Mech. Sci. Eng. 40, 545 (2018). https://doi.org/10.1007/s40430-018-1465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1465-1

Keywords

Navigation