Skip to main content
Log in

Accelerated element-free Galerkin method for analysis of fracture problems

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The work presents a modified form of element-free Galerkin method (EFGM) based on a procedure which allows selection of equal number of nodes in the support domain. This procedure is further improved by selecting domain nodes depending on the region of the problem geometry. The optimum number of support domain nodes is obtained by performing an optimization of selectable EFGM parameters namely total number of nodes in problem geometry, Gauss quadrature and random or desired number of nodes in support domain. Taguchi L-16 orthogonal array is used to obtain optimized values of these parameters. The optimized EFGM parameters provide good accuracy with lesser number of nodal points and reduce the computational time of conventional EFGM by an average of 85%. Interaction integral technique has been used in order to extract the stress intensity factors for the simulated problems. The worth of so presented accelerated element-free Galerkin method (AEFG) is established by simulating various cases of fracture problems and the results so obtained are concurrent with those available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Afsar AM, Go J (2010) Finite element analysis of thermoelastic field in a rotating FGM circular disk. Appl Math Model 34:3309–3320. https://doi.org/10.1016/j.apm.2010.02.022

    Article  MATH  Google Scholar 

  2. Kaddouri K, Belhouari M, Bouiadjra BB, Serier B (2006) Finite element analysis of crack perpendicular to bi-material interface: case of couple ceramic-metal. Comput Mater Sci 35:53–60. https://doi.org/10.1016/j.commatsci.2005.03.003

    Article  Google Scholar 

  3. Ju SH, Hsu HH (2014) Solving numerical difficulties for element-free Galerkin analyses. Comput Mech 53:273–281. https://doi.org/10.1007/s00466-013-0906-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Chao TY, Chow WK, Kong H (2002) A review on the applications of finite element method to heat transfer and fluid flow. Int J Archit Sci 3:1–19

    Google Scholar 

  5. Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress 21:593–626. https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  6. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256. https://doi.org/10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Gu L, Lu YY (1994) Fracture and crack growth by element free Galerkin methods. Model Simul Mater Sci Eng 2:519–534. https://doi.org/10.1088/0965-0393/2/3A/007

    Article  Google Scholar 

  8. Belytschko T, Lu YY, Gu L, Tabbara M (1995) Element-free galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570. https://doi.org/10.1016/0020-7683(94)00282-2

    Article  MATH  Google Scholar 

  9. Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187:441–468. https://doi.org/10.1016/S0045-7825(00)80004-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Xuan L (2002) Meshless element-free Galerkin method in NDT applications. AIP Conf Proc 615:1960–1967. https://doi.org/10.1063/1.1473033

    Article  Google Scholar 

  11. Li M, Werner E, You J-H (2015) Influence of heat flux loading patterns on the surface cracking features of tungsten armor under ELM-like thermal shocks. J Nucl Mater 457:256–265. https://doi.org/10.1016/j.jnucmat.2014.11.026

    Article  Google Scholar 

  12. Singh IV, Sandeep K, Prakash R (2003) Heat transfer analysis of two-dimensional fins using meshless element free Galerkin method. Numer Heat Transf A Appl 44:73–84. https://doi.org/10.1080/713838174

    Article  Google Scholar 

  13. Pathak H, Singh A, Singh IV (2014) Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method. Appl Math Model 38:3093–3123. https://doi.org/10.1016/j.apm.2013.11.030

    Article  MathSciNet  Google Scholar 

  14. Garg S, Pant M (2016) Numerical simulation of thermal fracture in functionally graded materials using element-free Galerkin method. Sadhana Acad Proc Eng Sci 42:417–431. https://doi.org/10.1007/s12046-017-0612-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813. https://doi.org/10.1016/j.matcom.2008.01.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Pant M, Singh IV, Mishra BK (2010) Numerical simulation of thermo-elastic fracture problems using element free Galerkin method. Int J Mech Sci 52:1745–1755. https://doi.org/10.1016/j.ijmecsci.2010.09.008

    Article  Google Scholar 

  17. Pant M, Singh IV, Mishra BK (2011) A numerical study of crack interactions under thermo-mechanical load using EFGM. J Mech Sci Technol 25:403–413. https://doi.org/10.1007/s12206-010-1217-3

    Article  Google Scholar 

  18. Pathak H, Singh A, Singh IV (2012) Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. Int J Mech Mater Des 8:9–36. https://doi.org/10.1007/s10999-011-9173-3

    Article  Google Scholar 

  19. Pant M, Bhattacharya S (2016) Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM. Int J Comput Methods 14:1750004–1–1750004–33. https://doi.org/10.1142/S0219876217500049

    Article  MathSciNet  MATH  Google Scholar 

  20. Salari-Rad H, Rahimi-Dizadji M, Rahimi-Pour S, Delforouzi M (2011) Meshless EFG simulation of linear elastic fracture propagation under various loadings. Arab J Sci Eng 36:1381–1392. https://doi.org/10.1007/s13369-011-0125-x

    Article  Google Scholar 

  21. Garg S, Pant M (2018) Numerical simulation of thermal fracture coatings using element free Galerkin method. Indian J Eng Mater Sci 24:217–232. https://doi.org/10.1007/s12046-017-0612-1

    Article  Google Scholar 

  22. Garg S, Pant M (2018) Meshfree methods: a comprehensive review of applications. Int J Comput Methods 15:1830001–1–1830001–85. https://doi.org/10.1142/S0219876218300015

    Article  MathSciNet  MATH  Google Scholar 

  23. Pathak H (2017) Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (FGMs) using coupled FE-XEFG approach. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2017.05.010

    Article  Google Scholar 

  24. Pathak H, Singh A, Singh IV (2016) Three-dimensional quasi-static interfacial crack growth simulations in thermo-mechanical environment by coupled FE-EFG approach. Theor Appl Fract Mech 86:267–283. https://doi.org/10.1016/j.tafmec.2016.08.001

    Article  Google Scholar 

  25. Pathak H, Singh A, Singh IV, Brahmankar M (2015) Three-dimensional stochastic quasi-static fatigue crack growth simulations using coupled FE-EFG approach. Comput Struct 160:1–19. https://doi.org/10.1016/j.compstruc.2015.08.002

    Article  Google Scholar 

  26. Pathak H, Singh A, Singh IV (2017) Numerical simulation of 3D thermo-elastic fatigue crack growth problems using coupled FE-EFG approach. J Inst Eng Ser C 98:295–312. https://doi.org/10.1007/s40032-016-0256-7

    Article  Google Scholar 

  27. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. 23rd ACM national conference, pp 517–524. https://doi.org/10.1145/800186.810616

  28. Yagawa G, Furukawa T (2000) Recent developments of free mesh method. Int J Numer Methods Eng 47:1419–1443. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8%3c1419:AID-NME837%3e3.0.CO;2-E

    Article  MATH  Google Scholar 

  29. Belytschko T, Lu YY, Gu L (1993) Crack propagation by element free Galerkin methods. In: Proceedings 1993 ASME winter annual meeting, 28 Nov 1993–3 Dec 1993, pp 191–205

  30. Günther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163:205–230. https://doi.org/10.1016/S0045-7825(98)00014-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113:397–414. https://doi.org/10.1016/0045-7825(94)90056-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Wen PH, Aliabadi MH, Liu YW (2008) Meshless method for crack analysis in functionally graded materials with enriched radial base functions. Comput Model Eng Sci 30:133–147

    MathSciNet  MATH  Google Scholar 

  33. Gavete L, Falcon S, Bellido JC (2000) Dirichlet boundary conditions in element free Galerkin method. In: European congress on computational methods in applied sciences and engineering, Barcelona, pp 1–14

  34. Lee S-H, Yoon Y-C (2004) Numerical prediction of crack propagation by an enhanced element-free Galerkin method. Nucl Eng Des 227:257–271. https://doi.org/10.1016/j.nucengdes.2003.10.007

    Article  Google Scholar 

  35. Belytschko T, Organ D, Krongauz Y (1995) A coupled finite element-element-free Galerkin method. Comput Mech 17:186–195. https://doi.org/10.1007/BF00364080

    Article  MathSciNet  MATH  Google Scholar 

  36. Asadpoure A, Mohammadi S, Vafai A (2006) Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elem Anal Des 42:1165–1175. https://doi.org/10.1016/j.finel.2006.05.001

    Article  Google Scholar 

  37. Rajesh KN, Rao BN (2010) Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method. Int J Fract 164:285–318. https://doi.org/10.1007/s10704-010-9496-3

    Article  MATH  Google Scholar 

  38. Reddy RM, Rao BN (2008) Continuum shape sensitivity analysis of mixed-mode fracture using fractal finite element method. Eng Fract Mech 75:2860–2906. https://doi.org/10.1016/j.engfracmech.2008.01.001

    Article  Google Scholar 

  39. Cao Y, Yao L, Yin Y (2013) New treatment of essential boundary conditions in EFG method by coupling with RPIM. Acta Mech Solida Sin 26:302–316. https://doi.org/10.1016/S0894-9166(13)60028-2

    Article  Google Scholar 

  40. Kaljevic I, Saigal S (1997) An improved element free Galerkin formulation. Int J Numer Methods Eng 40:2953–2974. https://doi.org/10.1002/(SICI)1097-0207(19970830)40:16%3c2953:AID-NME201%3e3.0.CO;2-S

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang Z, Liew KM, Cheng Y, Lee YY (2008) Analyzing 2D fracture problems with the improved element-free Galerkin method. Eng Anal Bound Elem 32:241–250. https://doi.org/10.1016/j.enganabound.2007.08.012

    Article  MATH  Google Scholar 

  42. Valencia OF, Gómez-Escalonilla FJ, Díez JL (2008) Influence of selectable parameters in element-free Galerkin method: one-dimensional bar axially loaded problem. Proc Inst Mech Eng C J Mech Eng Sci 222:1621–1633. https://doi.org/10.1243/09544062JMES782

    Article  Google Scholar 

  43. Valencia OF, Gómez-Escalonilla FJ, López-Díez J (2009) The influence of selectable parameters in the element-free Galerkin method: a one-dimensional beam-in-bending problem. Proc Inst Mech Eng C J Mech Eng Sci 223:1579–1590. https://doi.org/10.1243/09544062JMES1198

    Article  Google Scholar 

  44. Wenterodt C, Von Estorff O (2011) Optimized meshfree methods for acoustics. Comput Methods Appl Mech Eng 200:2223–2236. https://doi.org/10.1016/j.cma.2011.03.011

    Article  MathSciNet  MATH  Google Scholar 

  45. He Z, Li P, Zhao G, Chen H (2011) A meshless Galerkin least-square method for the Helmholtz equation. Eng Anal Bound Elem 35:868–878. https://doi.org/10.1016/j.enganabound.2011.01.010

    Article  MathSciNet  MATH  Google Scholar 

  46. Musivand-Arzanfudi M, Hosseini-toudeshky H, Musivand-Arzanfudi M (2007) Extended parametric meshless Galerkin method. Comput Methods Appl Mech Eng 196:2229–2241. https://doi.org/10.1016/j.cma.2006.11.011

    Article  MATH  Google Scholar 

  47. Sheng M, Li G, Shah S (2015) A modified method to determine the radius of influence domain in element-free Galerkin method. J Mech Eng Sci C 0:1–11. https://doi.org/10.1177/0954406214542034

    Article  Google Scholar 

  48. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element free Galerkin method. Arch Comput Methods Eng 5:207–241

    Article  MathSciNet  Google Scholar 

  49. Liu G, Tu Z (2002) An adaptive procedure based on background cells for meshless methods. Comput Methods Appl Mech Eng 191:1923–1943. https://doi.org/10.1016/S0045-7825(01)00360-7

    Article  MATH  Google Scholar 

  50. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–141. https://doi.org/10.1090/S0025-5718-1981-0616367-1

    Article  MathSciNet  MATH  Google Scholar 

  51. Rao BN, Rahman S (2003) Mesh-free analysis of cracks in isotropic functionally graded materials. Eng Fract Mech 70:1–27. https://doi.org/10.1016/S0013-7944(02)00038-3

    Article  Google Scholar 

  52. Kosaraju S, Anne VG, Popuri BB (2012) Taguchi analysis on cutting forces and temperature in turning titanium Ti–6Al–4V. Int J Mech Ind Eng 1:55–59

    Google Scholar 

  53. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34:911–925. https://doi.org/10.1007/s00170-006-0672-6

    Article  Google Scholar 

  54. Wang H, Liu Y, Yang P, Wu R, He Y (2016) Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method. Appl Therm Eng 103:128–138. https://doi.org/10.1016/j.applthermaleng.2016.03.033

    Article  Google Scholar 

  55. Pant M, Singh IV, Mishra BK (2013) A novel enrichment criterion for modeling kinked cracks using element free Galerkin method. Int J Mech Sci 68:140–149. https://doi.org/10.1016/j.ijmecsci.2013.01.008

    Article  Google Scholar 

  56. Singh IV, Mishra BK, Pant M (2010) An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method. Int J Fract 167:157–171. https://doi.org/10.1007/s10704-010-9536-z

    Article  MATH  Google Scholar 

  57. De S, Bathe KJ (2001) The method of finite spheres with improved numerical integration. Comput Struct 79:2183–2196. https://doi.org/10.1016/S0045-7949(01)00124-9

    Article  MathSciNet  Google Scholar 

  58. Elizalde-Gonzalez MP, Garcia-Diaz LE (2010) Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chem Eng J 163:55–61. https://doi.org/10.1016/j.cej.2010.07.040

    Article  Google Scholar 

  59. Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element-free Galerkin method. Comput Struct 71:173–195. https://doi.org/10.1016/S0045-7949(98)00205-3

    Article  MathSciNet  Google Scholar 

  60. Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Methods Eng 74:827–847. https://doi.org/10.1002/nme.2197

    Article  MathSciNet  MATH  Google Scholar 

  61. Mukhopadhyay NK, Maiti SK, Kakodkar A (1999) Effect of modelling of traction and thermal singularities on accuracy of SIFS computation through modified crack closure integral in BEM. Eng Fract Mech 64:141–159

    Article  Google Scholar 

  62. Singh IV, Mishra BK, Pant M (2011) An efficient partial domain enriched element free Galerkin method criterion for cracks in nonconvex domains. Int J Model Simul Sci Comput 2:317–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Garg.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Pant, M. Accelerated element-free Galerkin method for analysis of fracture problems. J Braz. Soc. Mech. Sci. Eng. 40, 541 (2018). https://doi.org/10.1007/s40430-018-1459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1459-z

Keywords

Navigation