Skip to main content
Log in

Improving efficiency of incompressible SPH method using a hybrid kernel function for simulation of free surface flows

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, a hybrid kernel function including a flat and steep function is introduced to improve efficiency of incompressible SPH method for simulation of free surface flows. The governing equations including the mass and momentum conservations are solved in a Lagrangian form using a two-step fractional method. The solid boundary conditions in which water penetration across the walls is avoided can be imposed in the computations by solving a pressure Poisson equation on the wall particles. This treatment exerts a force on inner fluid particles to repulse these particles accumulating in the vicinity of the walls. Several lines of dummy particles are also placed outside the walls in the conventional SPH method. Arrangement of these particles can be difficult for complex boundary shapes and 3-D problems. Here, the steeper kernel function is employed for SPH approximation of the particles in the vicinity of the walls that models accurately the wall conditions without requiring to the dummy particles. Function approximation of the particles with larger distances from the walls is also performed by employing the flatter kernel function requiring lower computational times. This strategy based on the hybrid kernel function has both advantages of simpler modeling the wall conditions without penetration in the absence of dummy particles and lower computational times. The efficiency of the hybrid kernel function is verified for two benchmark free surface problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Monaghan JJ (1996) Gravity currents and solitary waves. Phys D 98:523–533

    Article  Google Scholar 

  2. Shao SD, Lo EYM (2010) Incompressible SPH flow model for wave interactions with porous media. Coast Eng 57:304–316

    Article  Google Scholar 

  3. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port Coast Ocean Eng 129(6):250–259

    Article  Google Scholar 

  4. Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Meth Fluids 56(2):209–232

    Article  MathSciNet  Google Scholar 

  5. Liu X, Xu H, Shao S, Lin P (2013) An improved incompressible SPH model for simulation of wave–structure interaction. Comput Fluids 71:113–123

    Article  MathSciNet  Google Scholar 

  6. Shao S (2011) Incompressible smoothed particle hydrodynamics simulation of multifluid flows. Int J Numer Methods Fluids 69(11):1715–1735

    Article  MathSciNet  Google Scholar 

  7. Masciopinto C, Palmiotta D (2013) Relevance of solutions to the Navier–Stokes equations for explaining groundwater flow in fractured karst aquifers. Water Resour Res 49(6):3148–3164

    Article  Google Scholar 

  8. Wu Q, An Y, Liu Q (2015) SPH-based simulations for slope failure considering soil–rock interaction. Proc Eng 102:1842–1849

    Article  Google Scholar 

  9. Shao SD, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  10. Lee ES, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227:8417–8436

    Article  MathSciNet  Google Scholar 

  11. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  Google Scholar 

  12. Johnson GR, Beissel SR (1996) Normalised smoothing functions for SPH impact computations. Int J Numer Methods Eng 39:2725–2741

    Article  Google Scholar 

  13. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311

    Article  MathSciNet  Google Scholar 

  14. Jk C, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190:225–239

    Article  Google Scholar 

  15. Ataie-Ashtiani B, Shobeyri G, Farhadi L (2008) Modified incompressible SPH method for simulating free surface problems. Fluid Dyn Res 40(9):637–661

    Article  Google Scholar 

  16. Hashemi MR, Fatehi R, Manzari MT (2012) A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows. Int J Non Linear Mech 47(6):626–638

    Article  Google Scholar 

  17. Chiaki G, Yoshida N (2015) Particle splitting in smoothed particle hydrodynamics based on Voronoi Diagram. Mon Not R Astron Soc 451(4):3955–3963

    Article  Google Scholar 

  18. Ghaffari MA, Xiao S (2016) Smoothed particle hydrodynamics with stress points and centroid Voronoi tessellation (CVT) topology optimization. Int J Comput Methods 13(6):1650031

    Article  MathSciNet  Google Scholar 

  19. Shobeyri G, Ardakani RR (2017) Improving accuracy of SPH method using Voronoi Diagram. Iran J Sci Technol Trans Civ Eng 41:345–350

    Article  Google Scholar 

  20. Zheng X, Ma Q, Shao S, Khayyer A (2017) Modelling of violent water wave propagation and impact by incompressible SPH with first-order consistent kernel interpolation scheme. Water 9:400

    Article  Google Scholar 

  21. Shamsoddin R (2018) Incompressible SPH modeling of rotary micro pump mixers. Int J Comput Methods 15:1850019

    Article  MathSciNet  Google Scholar 

  22. Shao JR, Yang Y, Gong HF, Liu MB (2018) Numerical simulation of water entry with improved SPH method. Int J Comput Methods. https://doi.org/10.1142/S0219876218460040

    Article  Google Scholar 

  23. Cao XY, Ming FR, Zhang AM, Tao L (2018) Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin. Comput Fluids 163:7–19

    Article  MathSciNet  Google Scholar 

  24. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–154

    Article  Google Scholar 

  25. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152:584–607

    Article  MathSciNet  Google Scholar 

  26. Shobeyri G, Afshar MH (2010) Simulating free surface problems using discrete least-squares meshless method. Comput Fluids 39:461–470

    Article  Google Scholar 

  27. Shobeyri G (2017) Improving efficiency of SPH method for simulation of free surface flows using a new treatment of Neumann boundary conditions. J Braz Soc Mech Sci Eng 39:5001–5014

    Article  Google Scholar 

  28. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434

    Article  Google Scholar 

  29. Dressler RF (1954) Comparison of theories and experiments for the hydraulic dam-break wave. In: Proceedings of International Association of Scientific Hydrology, vol 3, no. 38, pp 319–328

  30. Monaghan JJ, Kos A (2000) Scott Russell’s wave generator. Phys Fluids 12:622–630

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Shobeyri.

Additional information

Technical Editor: Jader Barbosa Jr., Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobeyri, G. Improving efficiency of incompressible SPH method using a hybrid kernel function for simulation of free surface flows. J Braz. Soc. Mech. Sci. Eng. 40, 508 (2018). https://doi.org/10.1007/s40430-018-1433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1433-9

Keywords

Navigation