Skip to main content
Log in

Unsteady blood flow of non-Newtonian fluid through a rigid artery in the presence of multi-irregular stenoses

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The pulsating flow of blood through a rigid artery in the presence of multi-irregular shaped stenoses is explored in this paper. Herschel–Bulkley fluid model is used for representing the characteristics of blood. The arterial wall is assumed to be rigid. The equations governing the flow are set up under appropriate assumptions and then solved by using standard perturbation method subject to the prescribed boundary conditions. The numerical values of steady component of pressure gradient are obtained by using Newton–Raphson method. The effects of yield stress, Womersley frequency parameter and severity of stenosis on the plug core radius, wall shear stress and resistance to the flow are shown diagrammatically and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A\) :

Amplitude of the flow, \([ - ]\)

\(\bar{d}\) :

Axial position, \([{\text{cm}}]\)

\(d\) :

Dimensionless axial position, \([ - ]\)

\(\bar{l}\) :

Length of the stenosis, [cm]

\(n\) :

Power law index, \([ - ]\)

\(\bar{p}\) :

Pressure, [\({\text{dyn/cm}}^{2}\)]

\(p\) :

Dimensionless pressure, \([ - ]\)

\( \bar{Q} \) :

Flow rate, \([{\text{cm}}^{3} / {\text{s}}]\)

\(Q\) :

Dimensionless flow rate, \([ - ]\)

\(Q_{s}\) :

Dimensionless flow rate in case of steady flow, \([ - ]\)

\(\bar{q}(\bar{z})\) :

Steady-state pressure gradient, \([{\text{dyn/cm}}^{2} ]\)

\(q(z)\) :

Dimensionless steady-state pressure gradient, \([ - ]\)

\(\bar{q}_{0}\) :

Negative of the pressure gradient in the normal artery, [\({\text{dyn/cm}}^{2}\)]

\(\bar{R}(\bar{z})\) :

Radius of the stenotic blood vessel, \([{\text{cm}}]\)

\(R(z)\) :

Dimensionless radius of the stenotic blood vessel, \([ - ]\)

\(\bar{R}_{0}\) :

Radius of the normal artery, \([{\text{cm}}]\)

\(R_{p}\) :

Non-dimensional plug core radius, \([ - ]\)

\(\bar{r}\) :

Radial distance, \([{\text{cm}}]\)

\(r\) :

Dimensionless radial distance, \([ - ]\)

\(\bar{t}\) :

Time \([{\text{s}}]\)

\(t\) :

Dimensionless time,\([ - ]\)

\(\bar{w}\) :

Axial velocity \([{\text{cm/s}}]\)

\(w\) :

Dimensionless axial velocity, \([ - ]\)

\(w_{p}\) :

Dimensionless plug core velocity,\([ - ]\)

\(\bar{z}\) :

Axial distance, \([{\text{cm}}]\)

\(z\) :

Dimensionless axial distance, \([ - ]\)

\(\alpha^{2}\) :

Womersley frequency parameter, \([ - ]\)

\(\bar{\delta }\) :

Height of the stenosis, \([{\text{cm}}]\)

\(\delta\) :

Dimensionless height of the stenosis, \([ - ]\)

\(\Delta p\) :

Dimensionless pressure drop, \([ - ]\)

\(\theta\) :

Dimensionless yield stress, \([ - ]\)

\(\varLambda\) :

Dimensionless resistance to the flow \([ - ]\)

\(\bar{\mu }_{0}\) :

Coefficient of viscosity for Newtonian fluid [\({\text{cP}}\)]

\(\bar{\mu }_{H}\) :

Coefficient of viscosity for Herschel–Bulkley fluid, \([({\text{cP}})^{n} / {\text{s}}^{n - 1} ]\)

\(\bar{\rho }\) :

Density of the blood, \([{\text{Kg/cm}}^{3} ]\)

\(\bar{\tau }\) :

Shear stress, [\({\text{dyn/cm}}^{2}\)]\([ - ]\)

\(\tau\) :

Dimensionless shear stress, \([ - ]\)

\(\bar{\tau }_{H}\) :

Yield stress, [\({\text{dyn/cm}}^{2}\)]

\(\tau_{p}\) :

Dimensionless shear stress in the plug core region, \([ - ]\)

\(\tau_{w}\) :

Dimensionless wall shear stress, \([ - ]\)

\(\bar{\omega }\) :

Angular frequency, \([{\text{s}}^{ - 1} ]\)

References

  1. Chakravarty S (1987) Effect of stenosis on the flow behaviour of blood in an artery. Int J Eng Sci 25:1003–1018

    Article  Google Scholar 

  2. Peter R, Johnston Kilpatrick D (1991) Mathematical modelling of flow through an irregular arterial stenosis. J Ilimdda 24(11):1069–1077

    Google Scholar 

  3. Pincombe B, Mazumdar J, Hamilton-Craig I (1999) Effects of multiple stenoses and post-stenotic dilatation on non-Newtonian blood flow in small arteries. Med Biol Eng Comput 37:595–599

    Article  Google Scholar 

  4. Chaturani P, Palanisamy V (1989) Casson fluid model for pulsatile flow of blood under periodic body acceleration. Biorheology 27:619–630

    Article  Google Scholar 

  5. Liu B, Tang D (2000) A numerical simulation of viscous flows in collapsible tubes with stenoses. Appl Numer Math 32:87–101

    Article  MathSciNet  Google Scholar 

  6. Chakravarty S, Mandal PK (1994) Mathematical modelling of blood flow through an overlapping arterial stenosis. Math Comput Model 19:59–70

    Article  Google Scholar 

  7. Gijsen FJH, Allanic E, Vosse FN, Janssen JD (1999) The influences of the non-Newtonian properties of blood on the flow in large arteries unsteady flow in a 90D curved tube. J Biol Med 32:705–713

    Google Scholar 

  8. Sankar DS, Hemalatha K (2006) Pulsatile flow of Herschel–Bulkley fluid through Stenosed Arterie—a mathematical model. Int J Non-Linear Mech 41:979–990

    Article  Google Scholar 

  9. Srikanth D, Ramana Reddy JV, Shubha J, Anup K (2015) Unsteady polar fluid model of blood flow through tapered ω-shape stenosed artery: effects of catheter and velocity slip. Ain Shams Eng J 6:1093–1104

    Article  Google Scholar 

  10. Zaman A, Ali N, Bég OA (2016) Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm. Med Biol Eng Comput 54:1423–1436

    Article  Google Scholar 

  11. Pincombe B, Mazumdar JN (1997) The effects of post-stenotic dilatations on the flow of a blood analogue through stenosed coronary arteries. Math Comput Model 25:57–70

    Article  MathSciNet  Google Scholar 

  12. Ismail Z, Abdullah I, Mustapha N, Amin N (2008) A power-law model of blood flow through a tapered overlapping stenosed artery. Appl Math Comput 195:669–680

    MathSciNet  MATH  Google Scholar 

  13. Chakravarty S, Mandal PK (2000) Two-dimensional blood flow through tapered arteries under stenotic conditions. Int J Non-Linear Mech 35:779–793

    Article  Google Scholar 

  14. Zaman A, Ali N (2016) Effects of peripheral layer thickness on pulsatile flow of Herschel–Bulkley fluid through a stenotic artery. Can J Phys 94:920–928

    Article  Google Scholar 

  15. Biswas D, Laskar RB (2011) Steady flow of blood through a stenosed artery—a non-Newtonian fluid model. Assam Univ J Sci Technol 7:144–153

    Google Scholar 

  16. Jabir E, Anil S (2016) Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation. Proc Inst Mech Eng H 30(8):709–726. https://doi.org/10.1177/0954411916644474

    Article  Google Scholar 

  17. Abbas Z, Shabbir MS, Ali N (2018) Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration. Results Phys 9:753–762

    Article  Google Scholar 

  18. Das S, Das S, Changdar S, De S (2014) Analysis of blood flow through multi-irregular shape stenosed artery. Int J Pharm Biol Sci 4(2):244–252

    Google Scholar 

  19. Sacks AH, Raman KR, Burnell JA, Tickner EG (1963) Auscultatory Versus direct pressure measurements for Newtonian fluids and for blood in simulated arteries. Vidya Corp., Palo Alto, California Report 119

  20. Sankar DS, Hemalatha K (2007) A non-Newtonian fluid flow model for blood flow through a catheterized artery—steady flow. Appl Math Model 31:1847–1864

    Article  Google Scholar 

  21. Sankar DS, Lee U (2008) Two-fluid Herschel–Bulkley model for blood flow in catheterized arteries. J Mech Sci Technol 22:1008–1018

    Article  Google Scholar 

  22. Meena K, Gayathri P, Subramanian KR (2013) A non-Newtonian Herschel–Bulkley model for blood flow through catheterized tapered artery. Int J Curr Res 5:1473–1483

    Google Scholar 

  23. Kumar S, Garg NR, Gupta A (2015) Herschel–Bulkley model for blood flow through an arterial segment with stenosis. Int J Sci Technol Manag 4:93–100

    Google Scholar 

  24. Prasad KM, Vijaya B, Umadevi C (2014) A mathematical model of Herschel–Bulkley fluid through an overlapping stenosis. IOSR JM 10:41–46

    Article  Google Scholar 

  25. Abbas Z, Shabbir MS, Ali N (2017) Analysis of rheological properties of Herschel–Bulkley fluid for pulsating flow of blood in ω-shaped stenosed artery. AIP Adv 7:105123

    Article  Google Scholar 

  26. Siddiqui SU, Verma NK, Gupta RS (2015) A mathematical model for pulsatile flow of Herschel–Bulkley fluid through stenosed arteries. J Sci Technol 5(4):49–66

    Google Scholar 

  27. Chaturani P, Samy RP (1986) Pulsatile flow of Casson’s fluid through stenosed arteries with application to blood flow. Biorheology 23:499–511

    Article  Google Scholar 

  28. Jaafar NA, Yatim YM, Sankar DS (2016) Mathematical analysis for unsteady dispersion of solute with chemical reaction in blood flow. AIP Confer Proc 1750:030033

    Article  Google Scholar 

  29. Young DF (1968) Effect of time-dependent stenosis on flow through a tube. J Eng Indus 90:248–254

    Article  Google Scholar 

  30. Gayathri K, Shailendhra K (2014) Pulsatile blood flow in large arteries: comparative study of Burton’s and McDonald’s models. Appl Math Mech Engl Ed 35(5):575–590

    Article  MathSciNet  Google Scholar 

  31. Mustapha N, Mandal PK, Johnston PR, Amin N (2010) A numerical simulation of unsteady blood flow through a multi-irregular stenoses. Appl Math Model 34:1559–1573

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the anonymous reviewers for their valuable suggestions to improve the version of the article. The first author is very grateful to Higher Education Commission of Pakistan (HEC) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shabbir.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, M.S., Ali, N. & Abbas, Z. Unsteady blood flow of non-Newtonian fluid through a rigid artery in the presence of multi-irregular stenoses. J Braz. Soc. Mech. Sci. Eng. 40, 413 (2018). https://doi.org/10.1007/s40430-018-1327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1327-x

Keywords

Navigation