Skip to main content

Structural health monitoring of GFRP laminates using graphene-based smart strain gauges


Graphene nanocomposites are constantly being explored for their applicability in the growing domain of strain monitoring (Jing et al. in Chin Phys B 22(5):057701, 2013) for real-time health and integrity assessment of structural parts. Strain gauges were manufactured by incorporating conductive graphene nanoplatelets (GNPs) in insulating polystyrene matrix by varying filler concentrations. Initial measurements showed that the resistance of these gauges decreases with increasing content of GNPs. For structural health monitoring (SHM) applications, these gauges were pasted on laminated glass fiber composite substrate. The specimens with integrated gauges were tested under monotonic tensile loading. The piezoresistive response of gauges was observed and registered as a means to detect strains in the composite specimens. The results presented in this paper demonstrate SHM capabilities of these smart strain gauges.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Jing Z, Guang-Yu Z, Dong-Xia S (2013) Review of graphene-based strain sensors. Chin Phys B 22(5):057701

    Article  Google Scholar 

  2. 2.

    Balageas D, Fritzen C-P, Güemes A (2006) Structural health monitoring, vol 493. Wiley Online Library, Hoboken

    Book  Google Scholar 

  3. 3.

    Finlayson RD, Friesel M, Carlos M, Cole P, Lenain J (2001) Health monitoring of aerospace structures with acoustic emission and acousto-ultrasonics. Insight-Wigston then Northampton- 43(3):155–158

    Google Scholar 

  4. 4.

    Li HCH, Herszberg I, Davis CE, Mouritz AP, Galea SC (2006) Health monitoring of marine composite structural joints using fibre optic sensors. Compos Struct 75(1–4):321–327.

    Article  Google Scholar 

  5. 5.

    Alaimo A, Milazzo A, Orlando C (2013) Numerical analysis of a piezoelectric structural health monitoring system for composite flange-skin delamination detection. Compos Struct 100:343–355.

    Article  Google Scholar 

  6. 6.

    Baker W, McKenzie I, Jones R (2004) Development of life extension strategies for Australian military aircraft, using structural health monitoring of composite repairs and joints. Compos Struct 66(1–4):133–143.

    Article  Google Scholar 

  7. 7.

    Ding Y, Chen Z, Han Z, Zhang Y, Pacheco-Torgal F (2013) Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Constr Build Mater 43:233–241.

    Article  Google Scholar 

  8. 8.

    Fu T, Liu Y, Li Q, Leng J (2009) Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials. Opt Lasers Eng 47(10):1056–1062.

    Article  Google Scholar 

  9. 9.

    Nauman S, Cristian I, Koncar V (2011) Simultaneous application of fibrous piezoresistive sensors for compression and traction detection in glass laminate composites. Sensors 11(10):9478–9498

    Article  Google Scholar 

  10. 10.

    Nauman S, Cristian I, Koncar V (2012) Intelligent carbon fibre composite based on 3D-interlock woven reinforcement. Text Res J 82(9):931–944

    Article  Google Scholar 

  11. 11.

    Nauman S, Lapeyronnie P, Cristian I, Boussu F, Koncar V (2011) Online measurement of structural deformations in composites. Sens J IEEE 11(6):1329–1336

    Article  Google Scholar 

  12. 12.

    Wang S, Chung D (2006) Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement. Carbon 44(13):2739–2751

    Article  Google Scholar 

  13. 13.

    Cravanzola S, Haznedar G, Scarano D, Zecchina A, Cesano F (2013) Carbon-based piezoresistive polymer composites: structure and electrical properties. Carbon 62:270–277.

    Article  Google Scholar 

  14. 14.

    Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353.

    Article  Google Scholar 

  15. 15.

    Chiacchiarelli LM, Rallini M, Monti M, Puglia D, Kenny JM, Torre L (2013) The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Compos Sci Technol 80:73–79.

    Article  Google Scholar 

  16. 16.

    Okuhara Y, Matsubara H (2007) Carbon-matrix composites with continuous glass fiber and carbon black for maximum strain sensing. Carbon 45(6):1152–1159.

    Article  Google Scholar 

  17. 17.

    Yang CQ, Wu ZS, Huang H (2007) Electrical properties of different types of carbon fiber reinforced plastics (CFRPs) and hybrid CFRPs. Carbon 45(15):3027–3035.

    Article  Google Scholar 

  18. 18.

    Zhao J, Dai K, Liu C, Zheng G, Wang B, Liu C, Chen J, Shen C (2013) A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos A Appl Sci Manuf 48:129–136.

    Article  Google Scholar 

  19. 19.

    Zheng S, Deng J, Yang L, Ren D, Huang S, Yang W, Liu Z, Yang M (2014) Investigation on the piezoresistive behavior of high-density polyethylene/carbon black films in the elastic and plastic regimes. Compos Sci Technol.

    Google Scholar 

  20. 20.

    Zavickis J, Knite M, Ozols K, Malefan G (2011) Development of percolative electroconductive structure in piezoresistive polyisoprene–nanostructured carbon composite during vulcanization. Mater Sci Eng C 31(2):472–476.

    Article  Google Scholar 

  21. 21.

    Georgousis G, Pandis C, Chatzimanolis-Moustakas C, Kyritsis A, Kontou E, Pissis P, Krajči J, Chodák I, Tabačiarová J, Mičušík M, Omastová M (2015) Study of the reinforcing mechanism and strain sensing in a carbon black filled elastomer. Compos B Eng 80:20–26.

    Article  Google Scholar 

  22. 22.

    Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 47(14):3151–3157.

    Article  Google Scholar 

  23. 23.

    Wang L, Ding T, Wang P (2008) Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation. Compos Sci Technol 68(15–16):3448–3450.

    Article  Google Scholar 

  24. 24.

    Inam F, Bhat BR, Vo T, Daoush WM (2014) Structural health monitoring capabilities in ceramic–carbon nanocomposites. Ceram Int 40(2):3793–3798.

    Article  Google Scholar 

  25. 25.

    Xiao H, Li H, Ou J (2010) Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain. Sens Actuators, A 160(1–2):87–93.

    Article  Google Scholar 

  26. 26.

    Wang L, Cheng L (2014) Piezoresistive effect of a carbon nanotube silicone-matrix composite. Carbon 71:319–331.

    Article  Google Scholar 

  27. 27.

    Zhang W, Sakalkar V, Koratkar N (2007) In situ health monitoring and repair in composites using carbon nanotube additives. Appl Phys Lett 91(13):133102–133103

    Article  Google Scholar 

  28. 28.

    Kang M-H, Choi J-H, Kweon J-H (2014) Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Compos Struct 108:417–422.

    Article  Google Scholar 

  29. 29.

    Li W, He D, Bai J (2013) The influence of nano/micro hybrid structure on the mechanical and self-sensing properties of carbon nanotube-microparticle reinforced epoxy matrix composite. Compos A Appl Sci Manuf 54:28–36.

    Article  Google Scholar 

  30. 30.

    Vertuccio L, Vittoria V, Guadagno L, De Santis F (2015) Strain and damage monitoring in carbon-nanotube-based composite under cyclic strain. Compos A Appl Sci Manuf 71:9–16.

    Article  Google Scholar 

  31. 31.

    Wang Z-J, Kwon D-J, Gu G-Y, Kim H-S, Kim D-S, Lee C-S, DeVries KL, Park J-M (2013) Mechanical and interfacial evaluation of CNT/polypropylene composites and monitoring of damage using electrical resistance measurements. Compos Sci Technol 81:69–75.

    Article  Google Scholar 

  32. 32.

    Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T (2013) Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol 74:1–5.

    Article  Google Scholar 

  33. 33.

    Fan Q, Qin Z, Gao S, Wu Y, Pionteck J, Mäder E, Zhu M (2012) The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 50(11):4085–4092.

    Article  Google Scholar 

  34. 34.

    Chen J, Z-x Zhang, W-b Huang, J-l Li, J-h Yang, Wang Y, Z-w Zhou, J-h Zhang (2015) Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater Des 69:105–113.

    Article  Google Scholar 

  35. 35.

    Ku-Herrera JJ, Avilés F (2012) Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes. Carbon 50(7):2592–2598.

    Article  Google Scholar 

  36. 36.

    Georgousis G, Pandis C, Kalamiotis A, Georgiopoulos P, Kyritsis A, Kontou E, Pissis P, Micusik M, Czanikova K, Kulicek J, Omastova M (2015) Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos B Eng 68:162–169.

    Article  Google Scholar 

  37. 37.

    Yu X, Kwon E (2009) A carbon nanotube/cement composite with piezoresistive properties. Smart Mater Struct 18(5):055010

    Article  Google Scholar 

  38. 38.

    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375.

    Article  Google Scholar 

  39. 39.

    Childres I, Jauregui LA, Park W, Cao H, Chen YP (2013) Raman spectroscopy of graphene and related materials. In: Jang JI (ed) New developments in photon and materials research 1. Nova Science, New York

    Google Scholar 

  40. 40.

    Zhu S-E, Ghatkesar MK, Zhang C, Janssen G (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102(16):161904

    Article  Google Scholar 

  41. 41.

    Kuang J, Liu L, Gao Y, Zhou D, Chen Z, Han B, Zhang Z (2013) A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 5(24):12171–12177

    Article  Google Scholar 

  42. 42.

    Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2:395

    Article  Google Scholar 

  43. 43.

    Hempel M, Nezich D, Kong J, Hofmann M (2012) A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett 12(11):5714–5718

    Article  Google Scholar 

  44. 44.

    Patole AS, Patole SP, Jung S-Y, Yoo J-B, An J-H, Kim T-H (2012) Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur Polym J 48(2):252–259.

    Article  Google Scholar 

  45. 45.

    Le J-L, Du H, Pang SD (2014) Use of 2D graphene nanoplatelets (GNP) in cement composites for structural health evaluation. Compos B Eng 67:555–563.

    Article  Google Scholar 

  46. 46.

    Wang W, Yang T, Zhu H, Zheng Q (2015) Bio-inspired mechanics of highly sensitive stretchable graphene strain sensors. Appl Phys Lett 106(17):171903

    Article  Google Scholar 

  47. 47.

    Liu L, Zhang D (2015) The sensitive electrical response of reduced graphene oxide–polymer nanocomposites to large deformation. Compos A Appl Sci Manuf 75:46–53

    Article  Google Scholar 

  48. 48.

    Heeder N, Chakraborty I, Bose A, Shukla A (2015) Electro-mechanical behavior of graphene-polystyrene composites under dynamic loading. J Dyn Behav Mater 1(1):43–54

    Article  Google Scholar 

  49. 49.

    Nano A Graphene Nanoplatelets–Product Specifications–ACS Nano

  50. 50.

    Nasir MA, Akram H, Khan ZM, Shah M, Anas S, Asfar Z, Nauman S (2015) Smart sensing layer for the detection of damage due to defects in a laminated composite structure. J Intell Mater Syst Struct 26(17):2362–2368

    Article  Google Scholar 

  51. 51.

    Nauman S, Lapeyronnie P, Cristian I, Boussu F, Koncar V (2010) In situ strain sensing in three dimensional woven preform based composites using flexible textile based sensors. In: Recent advances in textile composites: October 26–28, 2010, Lille Grand Palais, Lille, France

  52. 52.

    Nauman S, Lapeyronnie P, Cristian I, Boussu F, Koncar V (2011) Online measurement of structural deformations in composites. IEEE Sens J 11(6):1329–1336

    Article  Google Scholar 

  53. 53.

    Cristian I, Nauman S, Cochrane C, Koncar V (2011) Electro-conductive sensors and heating elements based on conductive polymer composites in woven fabric structures. In: Savvas V (ed) Advances in modern woven fabric technology. InTech-openaccess, Croatia, pp 1–22

    Google Scholar 

  54. 54.

    Jan R, Habib A, Khan ZM, Khan MB, Anas M, Nasir A, Nauman S (2017) Liquid exfoliated graphene smart layer for structural health monitoring of composites. J Intell Mater Syst Struct 28(12):1565–1574.

    Article  Google Scholar 

  55. 55.

    Vionnet-Menot S, Grimaldi C, Maeder T, Ryser P, Strässler S (2005) Study of electrical properties of piezoresistive pastes and determination of the electrical transport. J Eur Ceram Soc 25(12):2129–2132.

    Article  Google Scholar 

  56. 56.

    Kim Y-J, Cha JY, Ham H, Huh H, So D-S, Kang I (2011) Preparation of piezoresistive nano smart hybrid material based on graphene. Curr Appl Phys 11(1):S350–S352

    Article  Google Scholar 

  57. 57. Accessed 30 September 2017

Download references

Author information



Corresponding author

Correspondence to Muhammad Ali Nasir.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anas, M., Nasir, M.A., Asfar, Z. et al. Structural health monitoring of GFRP laminates using graphene-based smart strain gauges. J Braz. Soc. Mech. Sci. Eng. 40, 397 (2018).

Download citation


  • Nanostructures
  • Smart materials
  • Layered structures
  • Mechanical testing
  • Structural health monitoring