Skip to main content
Log in

Robust finite-time feedback linearization control of robots: theory and experiment

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a finite-time feedback linearization method for n-DoF manipulators, considering mismatched uncertainties in dynamics. A particular scheme, based on input-state linearization, is proposed to reduce the system uncertainties’ repercussions and enhance the pace of regulation simultaneously. Providing the robustness characteristic, two different approaches are presented to deal with the mismatched uncertainties. In addition, in order to obtain the finitary control gains, the differential Riccati equation is used, and to resolve it, we take advantage of the Lyapunov-based method. Indeed, the capability of presented methods in both the regulation and tracking the trajectory is shown and certain results’ comparisons including dynamic load carrying capacity present a meticulous analysis on superiorities of the proposed approach. Besides, the finite-time, robust method is applied on a 3-DoF manipulator through extensive simulations. Finally, by implementing on an experimental robot, the simulation results are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Molter A, Alves Da Silveira OA, Ono Fonseca JS, Bottega V (2010) Simultaneous piezoelectric actuator and sensor placement optimization and control design of manipulators with flexible links using SDRE method. Math Probl Eng. https://doi.org/10.1155/2010/362437

  2. Ghariblu H, Korayem MH (2006) Trajectory optimization of flexible mobile manipulators. Robotica 24(3):333–335

    Article  Google Scholar 

  3. Ertugrul M, Kaynak O, Kerestecioglu F (2000) Gain adaptation in sliding mode control of robotic manipulators. Int J Syst Sci 31(9):1099–1106

    Article  MATH  Google Scholar 

  4. Korayem MH, Ghariblu H, Basu A (2004) Maximum allowable load of mobile manipulators for two given end points of end effector. Int J Adv Manuf Technol 24(9–10):743–751

    Article  Google Scholar 

  5. Korayem MH, Ghariblu H, Basu A (2005) Dynamic load-carrying capacity of mobile-base flexible joint manipulators. Int J Adv Manuf Technol 25(1–2):62–70

    Article  Google Scholar 

  6. Korayem MH, Heidari A, Nikoobin A (2008) Maximum allowable dynamic load of flexible mobile manipulators using finite element approach. Int J Adv Manuf Technol 36(9–10):1010–1021

    Article  Google Scholar 

  7. Tesheng H, Weng MC (2013) Robust joint position feedback control of robot manipulators. J Dyn Syst Meas Control. https://doi.org/10.1115/1.4023669

    Google Scholar 

  8. Mercorelli P (2009) Robust feedback linearization using an adaptive PD regulator for a sensor less control of a throttle valve. Mechatronics 19(8):1334–1345

    Article  Google Scholar 

  9. Chen JS, Chen YH (1991) Robust control of nonlinear uncertain systems: a feedback linearization approach. In: Proceedings of the 30th IEEE conference on decision and control. pp 2515–2520

  10. Marino R, Tomei P (1993) Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems. Automatica 29(1):181–189

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang BC, Kwatny H, Shr-Shiung H (1998) An application of robust feedback linearization to a ball and beam control problem. In: Proceedings of the IEEE international conference on control applications, vol 1

  12. Talole SE, Phadke SB (2009) Robust input–output linearization using uncertainty and disturbance estimation. Int J Control 82(10):1794–1803

    Article  MATH  Google Scholar 

  13. Huang et al. J (1992) Robust feedback linearization approach to autopilot design. In: First IEEE conference on control applications

  14. Abdelrahman M, Chang I, Park SY (2011) Magnetic torque attitude control of a satellite using the state-dependent Riccati equation technique. Int J Non-Linear Mech 46(5):758–771

    Article  Google Scholar 

  15. Zhang A, Ni J, Huo X (2014) Finite-time stabilization control for a rigid spacecraft under parameter uncertainties. J Appl Math. https://doi.org/10.1155/2014/816580

    Google Scholar 

  16. Solis-Daun J, Alvarez J, Suárez R (1992) Bounded finite-time control for planar feedback linearizable systems: application to a continuous stirred tank reactor. In: American control conference

  17. Lin F (2007) Robust control design: an optimal control approach, vol 18. Wiley, Hoboken

    Book  Google Scholar 

  18. Kirk DE (2012) Optimal control theory: an introduction. Courier Corporation, North Chelmsford

    Google Scholar 

  19. Kenney C, Leipnik R (1985) Numerical integration of the differential matrix Riccati equation. IEEE Trans Autom Control 30(10):962–970

    Article  MathSciNet  MATH  Google Scholar 

  20. Davison E, Maki M (1973) The numerical solution of the matrix Differential Riccati equation. IEEE Trans Autom Control 18(1):71–73

    Article  MATH  Google Scholar 

  21. Kalman RE (1960) Contribution to the theory of optimal control. Bol Soc Mat Mex 5:102–119

    MathSciNet  Google Scholar 

  22. Nazarzadeh J, Razzaghi M, Nikravesh KY (1998) Solution of the matrix Riccati equation for the linear quadratic control problems. Math Comput Model 27(7):51–55

    Article  MathSciNet  MATH  Google Scholar 

  23. Lancaster P, Tismenetsky M (1985) The theory of matrices: with applications. Elsevier, New York

    MATH  Google Scholar 

  24. Nguyen T, Gajic Z (2010) Solving the matrix differential Riccati equation: a Lyapunov equation approach. IEEE Trans Autom Control 55(1):191–194

    Article  MathSciNet  MATH  Google Scholar 

  25. Serbin S, Serbin C (1980) A time-stepping procedure for \({\dot{\rm{X}}}\) = A 1 X + XA 2 + D, X (0) = C. IEEE Trans Autom Control 25(6):1138–1141

    Article  MathSciNet  Google Scholar 

  26. Schilling RJ (1990) Fundamentals of robotics: analysis and control, vol 629. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Korayem MH, Nekoo SR (2016) The SDRE control of mobile base cooperative manipulators: collision free path planning and moving obstacle avoidance. Robot Auton Syst 86:86–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Kazemi.

Additional information

Technical Editor: Victor Juliano De Negri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, S., Rafee Nekoo, S. Robust finite-time feedback linearization control of robots: theory and experiment. J Braz. Soc. Mech. Sci. Eng. 40, 385 (2018). https://doi.org/10.1007/s40430-018-1304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1304-4

Keywords

Navigation