Skip to main content
Log in

Stresses in inhomogeneous elastic–viscoelastic–elastic sandwich plates via hyperbolic shear deformation theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A hyperbolic shear deformation theory is proposed to investigate the bending analysis of inhomogeneous elastic/viscoelastic/elastic (EVE) sandwich plates. The sandwich plate is consisting of two elastic material faces and viscoelastic material core. Three kinds of symmetric sandwich plates that are classified depending on thickness of each layer are presented. A fourth type of sandwich plate is considered without viscoelastic core. The equilibrium equations have been solved by using Illyushin’s approximation method as well as the effective moduli method. The deflection and stresses of simply supported EVE sandwich plates have been presented due to a hyperbolic theory and compared with those due to other familiar plate theories. The effect of different parameters on bending analysis of sandwich plates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Plantema FJ (1966) Sandwich construction. Wiley, New York

    Google Scholar 

  2. Whitney JM (1987) Structural analysis of laminated anisotropic plates. Technomic, Lancaster

    Google Scholar 

  3. Vinson JR (1999) The behavior of sandwich structures of isotropic and composite materials. Technomic, Lancaster

    Google Scholar 

  4. Reissner E (1947) On bending of elastic plates. Q Appl Math 5:55–68

    Article  MathSciNet  MATH  Google Scholar 

  5. Hoff NJ (1950) Bending and buckling of rectangular sandwich plates. NACA TN 2225, Nov

  6. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12(2), Trans ASME 61:69–77

  7. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J Appl Mech 18:31–38

    MATH  Google Scholar 

  8. Yang PC, Norris CH, Stavsky Y (1966) Elastic wave propagation in heterogeneous plates. Int J Solids Strut 2:665–684

    Article  Google Scholar 

  9. Reissner E (1985) Reflection on the theory of elastic plates. Appl Mech Rev 38:1453–1464

    Article  Google Scholar 

  10. Noor AK, Burton WS (1989) Refinement of higher-order laminated plate theories. Appl Mech Rev 42:1–13

    Article  Google Scholar 

  11. Reddy JN (1990) A review of refined theories of laminated composite plates. Shock Vib Dig 22:3–17

    Article  Google Scholar 

  12. Pagano NJ (1970) Exact solutions for rectangular bidirectional composite and sandwich plates. J Compos Mater 4(1):20–34

    Article  Google Scholar 

  13. Zenkour AM (2007) Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates. J Sand Strut Mater 9(3):213–238

    Article  Google Scholar 

  14. Pagano NJ, Hatfield SJ (1972) Elastic behaviour of multilayered bidirectional composite. AIAA J 10(12):931–933

    Article  Google Scholar 

  15. Noor AK, Peters JM, Burton WS (1994) Three-dimensional solutions for initially stressed structural sandwiches. J Eng Mech ASCE 120(2):284–303

    Article  Google Scholar 

  16. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 1—deflection and stresses. Int J Solids Strut 42(18–19):5224–5242

    Article  MATH  Google Scholar 

  17. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2—buckling and free vibration. Int J Solids Strut 42(18–19):5243–5258

    Article  MATH  Google Scholar 

  18. Hildebrand FB, Reissner E, Thomas GB (1949) Note on the foundations of the theory of small displacements of orthotropic shells. NACA TN-1833

  19. Nelson RB, Lorch DR (1974) A refined theory for laminated orthotropic plates. ASME J Appl Mech 41:177–183

    Article  Google Scholar 

  20. Librescu L (1975) Elastostatics and kinematics of anisotropic and heterogeneous shell type structures. Noordhoff, Groningen

    MATH  Google Scholar 

  21. Lo KH, Christensen RM, Wu EM (1977) A high order theory of plate deformation, part 1: homogeneous plates. ASME J Appl Mech 44(4):663–668

    Article  MATH  Google Scholar 

  22. Christensen RM, Lo KH, Wu EM (1977) A high order theory of plate deformation, part 2: laminated plates. ASME J Appl Mech 44(4):669–676

    Article  MATH  Google Scholar 

  23. Murthy MV (1981) An improved transverse shear deformation theory for laminated anisotropic plates. NASA Technical 1981:1903

  24. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  25. Khdeir AA, Reddy JN (1989) Exact solutions for the transient response of symmetric cross ply laminates using a higher order plate theory. Compos Sci Technol 34(3):205–224

    Article  Google Scholar 

  26. Zenkour AM (2018) A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos Struct 201:38–48

    Article  Google Scholar 

  27. Reddy JN, Barbero EJ, Teply JL (1989) A plate bending element based on a generalized laminate plate theory. Int J Numer Mech Eng 28:2275–2292

    Article  MATH  Google Scholar 

  28. Reddy JN, Khdeir AA (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAA J 27(12):1808–1817

    Article  MathSciNet  MATH  Google Scholar 

  29. Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47(1–3):663–684

    Article  MATH  Google Scholar 

  30. Zenkour AM (2006) Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model 30(1):67–84

    Article  MATH  Google Scholar 

  31. Zenkour AM (2009) The refined sinusoidal theory for FGM plates on elastic foundations. Int J Mech Sci 51(11–12):869–880

    Article  Google Scholar 

  32. Soldatos KP (1992) A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech 94:195–220

    Article  MathSciNet  MATH  Google Scholar 

  33. Soldatos KP, Timarci T (1993) A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories. Compos Strut 25(1–4):165–171

    Article  Google Scholar 

  34. Neves AMA, Ferreira AJM, Carrera E et al (2011) Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions. Mech Res Commun 38:368–371

    Article  MATH  Google Scholar 

  35. Neves AMA, Ferreira AJM, Carrera E et al (2012) A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos B Eng 43:711–725

    Article  Google Scholar 

  36. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN, Soares CMM (2012) A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos Struct 94:1814–1825

    Article  Google Scholar 

  37. Ranjbaran A, Khoshravan MR, Kharazi M (2014) Buckling analysis of sandwich plate using layerwise theory. J Mech Sci Technol 28(7):2769–2777

    Article  Google Scholar 

  38. Maturi DA, Ferreira AJM, Zenkour AM, Mashat DS (2014) Analysis of sandwich plates with a new layerwise formulation. Compos B 56:484–489

    Article  Google Scholar 

  39. Pandey S, Pradyumna S (2015) Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory. Eur J Mech A/Solids 51:55–66

    Article  MathSciNet  Google Scholar 

  40. Rakočević M, Popović S, Ivanišević N (2017) A computational method for laminated composite plates based on layerwise theory. Compos B 122:202–218

    Article  Google Scholar 

  41. Xing YF, Wu Y, Liu B, Ferreira AJM, Neves AMA (2017) Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method. Compos Struct 170:158–168

    Article  Google Scholar 

  42. Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech Trans ASME 37(4):1031–1036

    Article  MATH  Google Scholar 

  43. Bert CW (1973) Simplified analysis of elastic shear factors for beams of non-homogeneous cross-section. J Compos Mater 7:525–529

    Article  Google Scholar 

  44. Reissner E (1991) A mixed variational equation for a twelfth-order theory of bending of nonhomogeneous transversely isotropic plates. Comput Mech 7(5–6):255–260

    MATH  Google Scholar 

  45. Reissner E (1994) On the equations of an eighth-order theory of nonhomogeneous transversely isotropic plates. Int J Solids Strut 31(1):89–96

    Article  MATH  Google Scholar 

  46. Fares ME, Zenkour AM (1999) Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories. Compos Strut 44(4):279–287

    Article  Google Scholar 

  47. Zenkour AM, Fares ME (1999) Non-homogeneous response of cross-ply laminated elastic plates using a higher-order theory. Compos Strut 44(4):297–305

    Article  Google Scholar 

  48. Hashin Z (1965) Viscoelastic behavior of heterogeneous media. J Appl Mech Trans ASME 32:630–636

    Article  Google Scholar 

  49. DiTaranto RA (1965) Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. ASME J Appl Mech 32:881–886

    Article  Google Scholar 

  50. Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175

    Article  MATH  Google Scholar 

  51. Douglas BE, Yang JCS (1978) Transverse compressional damping in the vibratory response of elastic–viscoelastic beams. AIAA J 16:925–930

    Article  Google Scholar 

  52. Wilson DW, Vinson JR (1984) Viscoelastic analysis of laminated plate buckling. AIAA J 22:982–988

    Article  MATH  Google Scholar 

  53. Kim CG, Hong CS (1988) Viscoelastic sandwich plates with cross-ply faces. J Strut Eng 114:150–164

    Article  Google Scholar 

  54. Huang NN (1994) Viscoelastic buckling and post buckling of circular cylindrical laminated shells in hygrothermal environment. J Mar Sci Technol 2:9–16

    Google Scholar 

  55. Pan H (1966) Vibrations of viscoelastic plates. J de Mécanique 5:355–374

    MATH  Google Scholar 

  56. Librescu L, Chandiramani NK (1989) Dynamic stability of transversely isotropic viscoelastic plates. JSound Vib 130:467–486

    Article  MATH  Google Scholar 

  57. Zenkour AM (2004) Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. J Eng Math 50:75–93

    Article  MATH  Google Scholar 

  58. Zenkour AM (2004) Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech 171:171–187

    Article  MATH  Google Scholar 

  59. Allam MNM, Zenkour AM, El-Mekawy HF (2010) Bending response of inhomogeneous fiber-reinforced viscoelastic sandwich plates. Acta Mech 209:231–248

    Article  MATH  Google Scholar 

  60. Zenkour AM (2011) Bending responses of an exponentially graded simply supported elastic/viscoelastic/elastic sandwich plate. Acta Mech Solida Sin 24(3):250–261

    Article  Google Scholar 

  61. Zenkour AM (2012) Viscoelastic analysis of an exponentially graded sandwich plate. J Mech Sci Technol 26(3):889–898

    Article  MathSciNet  Google Scholar 

  62. Zenkour AM, El-Mekawy HF (2014) Bending of inhomogeneous sandwich plates with viscoelastic cores. J Vibroeng 16(7):3260–3272

    Google Scholar 

  63. Pobedrya E (1976) Structural anisotropy in viscoelasticity. Polym Mech 12(4):557–561

    Article  Google Scholar 

  64. Illyushin A, Pobedria BE (1970) Foundations of mathematical theory of thermo viscoelasticity. Nauka, Moscow (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça.

Appendices

Appendix 1

$$C_{11} = - \alpha^{2} A_{11} - \beta^{2} A_{66} ,$$
(42)
$$C_{12} = - \alpha \beta \left( {A_{12} + A_{66} } \right),$$
(43)
$$C_{13} = \alpha \left[ {\alpha^{2} B_{11} + \beta^{2} \left( {B_{12} + 2B_{66} } \right)} \right],$$
(44)
$$C_{14} = - \alpha^{2} D_{11} - \beta^{2} D_{66} + \cosh \left( {\frac{1}{2}} \right)\left( {\alpha^{2} B_{11} + \beta^{2} B_{66} } \right),$$
(45)
$$C_{15} = C_{24} = - \alpha \beta \left( {D_{12} + D_{66} } \right) + \alpha \beta \cosh \left( {\frac{1}{2}} \right)\left( {B_{12} + B_{66} } \right),$$
(46)
$$C_{22} = - \alpha^{2} A_{66} - \beta^{2} A_{11} ,$$
(47)
$$C_{23} = \beta \left[ {\alpha^{2} \left( {B_{12} + 2B_{66} } \right) + \beta^{2} B_{11} } \right],$$
(48)
$$C_{25} = - \alpha^{2} D_{66} - \beta^{2} D_{11} + \cosh \left( {\frac{1}{2}} \right)\left[ {\alpha^{2} B_{66} + \beta^{2} B_{11} } \right],$$
(49)
$$C_{33} = - \alpha^{4} F_{11} - 2\alpha^{2} \beta^{2} \left( {F_{12} + 2F_{66} } \right) - \beta^{4} F_{11} ,$$
(50)
$$C_{34} = \alpha \left[ {\alpha^{2} H_{11} + \beta^{2} \left( {H_{12} + 2H_{66} } \right)} \right] - \alpha \cosh \left( {\frac{1}{2}} \right)\left[ {\alpha^{2} F_{11} + \beta^{2} \left( {F_{12} + 2F_{66} } \right)} \right],$$
(51)
$$C_{35} = \beta \left[ {\beta^{2} H_{11} + \alpha^{2} \left( {H_{12} + 2H_{66} } \right)} \right] - \beta \cosh \left( {\frac{1}{2}} \right)\left[ {\beta^{2} F_{11} + \alpha^{2} \left( {F_{12} + 2F_{66} } \right)} \right],$$
(52)
$$\begin{aligned} C_{44} & = - \alpha^{2} S_{11} - \beta^{2} S_{66} + L_{44} + \cosh \left( {\frac{1}{2}} \right)\left[ {2\alpha^{2} H_{11} + 2\beta^{2} H_{66} - 2G_{44} } \right. \\ & \quad \left. { + \cosh \left( {\frac{1}{2}} \right)\left( {J_{44} - \alpha^{2} F_{11} - \beta^{2} F_{66} } \right)} \right], \\ \end{aligned}$$
(53)
$$C_{45} = - \alpha \beta \left( {S_{12} + S_{66} } \right) + \alpha \beta \cosh \left( {\frac{1}{2}} \right)\left[ {H_{12} + 2H_{66} - \cosh \left( {\frac{1}{2}} \right)\left( {F_{12} + F_{66} } \right)} \right],$$
(54)
$$\begin{aligned} C_{55} & = - \alpha^{2} E_{66} - \beta^{2} E_{22} + L_{44} \\ & \quad + \cosh \left( {\frac{1}{2}} \right)\left[ {2\alpha^{2} H_{66} + 2\beta^{2} H_{11} - 2G_{44} + \cosh \left( {\frac{1}{2}} \right)\left( {J_{44} - \alpha^{2} F_{66} - \beta^{2} F_{11} } \right)} \right] \\ \end{aligned}$$
(55)

Appendix 2

The functions \(\pi \left( t \right)\) and \(g_{{\mu_{m} }} \left( t \right)\) may be derived by deducing Laplace–Carson transform of these functions from known Laplace–Carson transform of function \(\omega \left( t \right)\) as

$$\omega^{*} \left( s \right) = s\mathop \int \limits_{0}^{\infty } \omega \left( t \right){\text{e}}^{ - st} {\text{d}}t,$$
(56)

using Eq. (28), one gets

$$\omega^{*} \left( s \right) = s\mathop \int \limits_{0}^{\infty } \left( {c_{1} + c_{2} {\text{e}}^{{ - t/t_{s} }} } \right){\text{e}}^{ - st} {\text{d}}t,$$
(57)

then by integrating the above function, we get

$$\omega^{*} \left( s \right) = - s\left[ {\left. {\frac{{c_{1} }}{s}{\text{e}}^{ - st} } \right|_{0}^{\infty } + \left. {\frac{{c_{2} }}{\alpha + s}{\text{e}}^{{ - \left( {\frac{1}{{t_{s} }} + s} \right)t}} } \right|_{0}^{\infty } } \right] = c_{1} + \frac{{c_{2} s}}{\alpha + s},$$
(58)

but we have

$$\pi^{*} \left( s \right) = \frac{1}{{\omega^{*} \left( s \right)}} = \frac{1}{{c_{1} + \frac{{c_{2} s}}{\alpha + s}}},$$
(59)

then

$$\pi^{*} \left( s \right) = \frac{\alpha + s}{{c_{1} \alpha + \left( {c_{1} + c_{2} } \right)s}} = \frac{1}{{c_{1} }}\left( {\frac{{c_{1} \alpha + \left( {c_{1} + c_{2} } \right)s - c_{2} s}}{{c_{1} \alpha + \left( {c_{1} + c_{2} } \right)s}}} \right),$$
(60)

or

$$\pi^{*} \left( s \right) = \frac{1}{{c_{1} }}\left( {1 - \frac{{c_{2} st_{s} }}{{c_{1} + \left( {c_{1} + c_{2} } \right)st_{s} }}} \right) = \frac{1}{{c_{1} }}\left( {1 - c_{3} \frac{{st_{s} }}{{c_{4} + st_{s} }}} \right),$$
(61)

where

$$c_{3} = \frac{{c_{2} }}{{c_{1} + c_{2} }}, c_{4} = \frac{{c_{1} }}{{c_{1} + c_{2} }}.$$
(62)

So, \(\pi \left( t \right)\) can be obtained by using inverse Laplace–Carson as

$$\pi \left( t \right) = \frac{1}{{c_{1} }}\left( {1 - c_{3} {\text{e}}^{{ - c_{4} \tau }} } \right), \tau = t/t_{s} .$$
(63)

Similarly,

$$g_{{\mu_{m} }}^{*} \left( s \right) = \frac{1}{{1 + \mu_{m} \omega^{*} \left( s \right)}} = \frac{1}{{1 + \mu_{m} \left( {c_{1} + \frac{{c_{2} s}}{\alpha + s}} \right)}}, m = 1,2,$$
(64)

or

$$g_{{\mu_{m} }}^{*} \left( s \right) = \frac{1}{{1 + c_{1} \mu_{m} }}\left( {1 - \frac{{c_{2} \mu_{m} s}}{{\alpha \left( {1 + c_{1} \mu_{m} } \right) + s\left[ {1 + \left( {c_{1} + c_{2} } \right)\mu_{m} } \right]}}} \right),$$
(65)

where \(\mu_{1} = \frac{1}{2}\) and \(\mu_{2} = 2\). So,

$$g_{{\mu_{m} }}^{*} \left( s \right) = \frac{1}{{1 + c_{1} \mu_{m} }}\left( {1 - c_{5}^{m} \frac{{st_{s} }}{{c_{6}^{m} + st_{s} }}} \right),$$
(66)

in which

$$c_{5}^{m} = \frac{{c_{2} \mu_{m} }}{{1 + \left( {c_{1} + c_{2} } \right)\mu_{m} }}, c_{6}^{m} = \frac{{1 + c_{1} \mu_{m} }}{{1 + \left( {c_{1} + c_{2} } \right)\mu_{m} }},$$
(67)

and then \(g_{{\mu_{m} }} \left( t \right)\) may be obtained in its final form as

$$g_{{\mu_{m} }} \left( t \right) = \frac{1}{{1 + c_{1} \mu_{m} }}\left( {1 - c_{5}^{m} {\text{e}}^{{ - c_{6}^{m} \tau }} } \right).$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Mekawy, H.F. Stresses in inhomogeneous elastic–viscoelastic–elastic sandwich plates via hyperbolic shear deformation theory. J Braz. Soc. Mech. Sci. Eng. 40, 363 (2018). https://doi.org/10.1007/s40430-018-1284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1284-4

Keywords

Navigation