Skip to main content
Log in

Abstract

Since diluted suspensions of nanoparticles were first called nanofluids and presented as viable solutions for heat transfer applications, this subject has received much attention and related investigations have expanded to many paths. In order to comprehend how nanoscale-related effects could influence the macroscopic transport behavior of nanofluids under single or phase-change conditions, researchers have studied, for example, the stability of these solutions, variation of thermal and rheological properties, and the convective heat transfer behavior of a great variety of nanofillers in common fluids, mainly water. The deposition of nanofillers over heated surfaces has also been investigated due to the role of surface nanostructuring in modifying wettability, thermal resistance, and delaying the occurrence of critical heat flux. Despite the considerable number of publications regarding nanofluids, scattered results for transport properties or convective behavior of nanofluids under similar experimental conditions are often found, which hinders their applications due to a lack of comprehension on the mechanisms related to the behavior of these fluids and, consequently, to the difficulty in predicting it. In this context, this work concerns a review about the heat transfer behavior of nanofluids under single-phase flow, pool boiling, and flow boiling conditions. In general, there is a consensus that the heat transfer coefficient of single-phase flow is enhanced by the addition of nanoparticles to base fluids, although overall benefits of their application cannot be assured due to increases in viscosity. In contrast, either increase or decrease in heat transfer coefficient could be observed for pool and flow boiling conditions. Such behavior can be attributed to surface modifications due to interactions between the bare surface texture and the deposited nanoparticles; however, information on the surface texture is commonly missing in most works. Finally, the main mechanisms reported in the literature pointed out as responsible for the heat transfer coefficient behaviors are summarized, where it can be seen that modifications of transport properties and particles movements impact single-phase flow, while phase-change heat transfer is also influenced by variations of surface characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c p :

Specific heat [J/(kg K)]

d :

Channel diameter (m)

d p :

Particle diameter (m)

g :

Gravity acceleration (m/s2)

G :

Mass velocity [kg/(m2 s)]

h :

Heat transfer coefficient [W/(m2 K)]

k :

Thermal conductivity [W/(m K)]

n :

Configuration factor

p :

Pressure (kPa)

q :

Heat flux (kW/m2)

r c :

Critical radius (m)

r np :

Particle radius (m)

R bd :

Interfacial thermal resistance (K/W)

T :

Temperature (°C)

v :

Sedimentation velocity (m/s)

V :

Flow velocity (m/s)

x :

Vapor quality

α :

Thermal conductivity ratio

ϕ :

Particles volume fraction

ϕ m :

Particles mass fraction

λ :

Minimum spacing between particles (m)

ρ :

Density (kg/m3)

σ :

Surface tension (N/m)

ψ :

Sphericity

bf:

Base fluid

in:

Inlet

nf:

Nanofluid

np:

Nanoparticle

CHF:

Critical heat flux

HTC:

Heat transfer coefficient

PVA:

Polyvinyl acetate

References

  1. Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3(3):147–169

    Google Scholar 

  2. Li Z, Kandlikar SG (2015) Current status and future trends in data-center cooling technologies. Heat Transf Eng 36:523–538

    Google Scholar 

  3. Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B (2007) State of the art of high heat flux cooling technologies. Heat Transf Eng 22(4):258–281

    Google Scholar 

  4. Jakhar S, Sonni MS, Gakkhar N (2016) Historical and recent development of concentrating photovoltaic cooling technologies. Renew Sustain Energy Rev 60:41–59

    Google Scholar 

  5. Zimmermann S, Meijer I, Tiwari MK, Paredes S, Michel B, Poulikakos D (2012) Aquasar: a hot water cooled data center with direct energy reuse. Energy 43:237–245

    Google Scholar 

  6. Zimmermann S, Helmers H, Tiwari MK, Paredes S, Michel B, Wiesenfarth M, Bett AW, Poulikakos D (2015) A high-efficiency hybrid high-concentration photovoltaic system. Int J Heat Mass Transf 89:514–521

    Google Scholar 

  7. Kandlikar SG (2016) Mechanistic considerations for enhancing flow boiling heat transfer in microchannels. J Heat Transf 138:021504

    Google Scholar 

  8. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF–951135—29. Argonne National Lab., IL

  9. Babita Sharma SK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci 79:202–212

    Google Scholar 

  10. Lomascolo M, Colangelo G, Milanese M, Risi A (2015) Review of heat transfer in nanofluids: conductive, convective and radiative experimental results. Renew Sustain Energy Rev 43:1182–1198

    Google Scholar 

  11. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flows. Int J Heat Mass Transf 48:1107–1116

    Google Scholar 

  12. Masuda H, Ebata A, Teramae K, Hishinima N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles (dispersion of Al2O3, SiO2 and TiO2 ultrafine particles). Netsu Bussei 4(4):227–233

    Google Scholar 

  13. Angayarkanni SA, Philip J (2015) Review on thermal properties of nanofluids: recent developments. Adv Coll Interface Sci 225:146–176

    Google Scholar 

  14. Kakaç S, Pramuanjaroenkij A (2016) Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids—a state-of-the-art review. Int J Therm Sci 100:75–97

    Google Scholar 

  15. Ciloglu D, Blukbasi A (2015) A comprehensive review on pool boiling of nanofluids. Appl Therm Eng 84:45–63

    Google Scholar 

  16. Fang X, Wang R, Chen W, Zhang H, Ma C (2015) A review on flow boiling heat transfer of nanofluids. Appl Therm Eng 91:1003–1017

    Google Scholar 

  17. Pinto RV, Fiorelli FAS (2016) Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng 108:720–739

    Google Scholar 

  18. Fang X, Chen Y, Zhang H, Chen W, Dong A, Wang R (2016) Heat transfer and critical heat flux of nanofluid boiling: a comprehensive review. Renew Sustain Energy Rev 62:924–940

    Google Scholar 

  19. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Google Scholar 

  20. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Google Scholar 

  21. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Google Scholar 

  22. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Google Scholar 

  23. Li CH, Paterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314

    Google Scholar 

  24. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574

    Google Scholar 

  25. Buongiorno J, Venerus DC, Prabhat N, Mckrell L, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim J-H, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-H, Zhao X-Z, Zhou S-Q (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Google Scholar 

  26. Tertsidou GJ, Tsolakidou CM, Pantzali M, Assael MJ, Colla L, Fedele L, Bobbo S, Wakeham WA (2016) New measurements of the apparent thermal conductivity of nanofluids and investigation of their heat transfer capabilities. J Chem Eng Data 62:491–507

    Google Scholar 

  27. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862

    MATH  Google Scholar 

  28. Faulkner D, Khotan M, Sherrakiz R (2003) Practical design of a 1000 W/cm(2) cooling system. In: 19th Annual symposium semiconductor thermal measurement and management symposium, Fairmont, EUA

  29. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83:3374–3376

    Google Scholar 

  30. Buongiorno J (2013) Can corrosion and CRUD actually improve safety margins in nuclear plants? In: 8th International conference on multiphase flow, Jeju, South Korea

  31. Kim SJ, McKrell T, Buongiorno J, Hu LW (2010) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240:1186–1194

    Google Scholar 

  32. Diao YH, Li CZ, Zhao YH, Liu Y, Wang S (2015) Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure. Int J Heat Mass Transf 89:110–115

    Google Scholar 

  33. Sarafraz MM, Kiani T, Hormozi F (2016) Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int Commun Heat Mass Transf 70:75–83

    Google Scholar 

  34. Rainho Neto A, Oliveira JLG, Passos JC (2017) Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs. Appl Therm Eng 111:1493–1506

    Google Scholar 

  35. Das KS, Choi SUS, Yu W, Pradeep T (2007) Nanofluids, science and technology. Wiley-Interscience, New York

    Google Scholar 

  36. Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068

    Google Scholar 

  37. Wu D, Zhu H, Wang L, Liua L (2009) Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Nanosci 5:103–112

    Google Scholar 

  38. Moraes AAU (2012) Avaliação teórica e experimental do coeficiente de transferência de calor e fluxo crítico durante a ebulição convectiva de nanofluidos. Post-doctoral report, CAPES-NANOBIOTEC

  39. Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1–2):70–74

    Google Scholar 

  40. Jin H, Xianju W, Qiong L, Xueyi W, Yunjin Z, Liming L (2009) Influence of pH on the stability characteristics of nanofluids. In: Symposium on photonics and optoelectronics, Wuhan, China

  41. Lee D, Kim W, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge of the particle in suspension. J Phys Chem B 110(9):4323–4328

    Google Scholar 

  42. Huang J, Wang X (2009) Influence of pH on the stability characteristics of nanofluid. In: Symposium on photonics and optoelectronics, Wuhan, China

  43. Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys 9:131–139

    Google Scholar 

  44. Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of nanoparticle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11(5):1126–1136

    Google Scholar 

  45. Oliveira LR, Silva ACA, Dantas NO, Bandarra Filho EP (2017) Thermophysical properties of TiO2-PVA/water nanofluids. Int J Heat Mass Transf 115:795–808

    Google Scholar 

  46. Zhang H, Shao S, Xu H, Tian C (2013) Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel—experimental results and correlations. Appl Therm Eng 61:86–92

    Google Scholar 

  47. Esfahani JA, Safaei MR, Goharimanesh M, Oliveira LR, Goodarzi M, Shamshirband S, Bandarra Filho EP (2017) Comparison of experimental data, modeling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol 317:458–470

    Google Scholar 

  48. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    MATH  Google Scholar 

  49. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Google Scholar 

  50. Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of the nanofluids. Renew Sustain Energy Rev 11:512–523

    Google Scholar 

  51. Wang X, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19

    Google Scholar 

  52. Paul G, Chopkar M, Manna L, Das PK (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14(7):1913–1924

    Google Scholar 

  53. Murshed SMS, Leong KC, Yang C (2008) Investigation of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Google Scholar 

  54. Xie H, Wang J, Xi T, Liu Y (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23(2):571–580

    Google Scholar 

  55. Li Q, Xuan Y, Wang J (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Google Scholar 

  56. Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311

    Google Scholar 

  57. Motta FC (2011) Caracterização de propriedades termodinâmicas e de transporte de nanofluidos. Master thesis. University of São Paulo

  58. Barbes V, Paramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C (2013) Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim 111:1615–1625

    Google Scholar 

  59. Fontes DH, Ribatski G, Bandarra Filho EP (2015) Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of carbon nanotubes and diamond in transformer oil. Diam Relat Mater 58:115–121

    Google Scholar 

  60. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44(4):367–373

    Google Scholar 

  61. Feng Y, Yu B, Xu P, Zou M (2007) The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys 40(10):3164–3171

    Google Scholar 

  62. Chopkar M, Das AK, Manna L, Das PK (2008) Pool boiling heat transfer characteristics of ZrO2-water based nanofluids from a flat surface in a pool. Heat Mass Transf 44(8):999–1004

    Google Scholar 

  63. Colangelo G, Favale E, De Risi A, Laforgia D (2012) Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl Energy 97:828–833

    Google Scholar 

  64. Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371

    Google Scholar 

  65. Li CH, Willians W, Buongiorno J, Hu LW, Peterson GP (2008) Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids. J Heat Transf 130(4):042407

    Google Scholar 

  66. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Google Scholar 

  67. Yamsawasd T, Dalkilic AS, Wongwises S (2012) Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta 545:48–56

    Google Scholar 

  68. Turgut A, Tavman I, Chirtoc M, Schuchmann HP, Sauter C, Tavaman S (2009) Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int J Thermophys 30:1213–1226

    Google Scholar 

  69. Maxwell JC (1873) A treatise on electricity and magnetism, vol I. Clarenton Press, Oxford

    MATH  Google Scholar 

  70. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699

    Google Scholar 

  71. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067

    Google Scholar 

  72. Akhavan-Zanjani H, Saffar-Avval M, Mansourkiaei M, Sharif F, Ahadi M (2016) Experimental investigation of laminar forced convective heat transfer of Graphene-water nanofluid inside circular tube. Int J Therm Sci 100:316–323

    Google Scholar 

  73. White FM (2006) Viscous fluid flow, 3rd edn. McGraw Hill, New York

    Google Scholar 

  74. Mena JB, Moraes AAU, Benito YR, Ribatski G, Parise JAR (2013) Extrapolation of Al2O3-water nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing correlations. Appl Therm Eng 51:1092–1097

    Google Scholar 

  75. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480

    Google Scholar 

  76. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA (2008) Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci 42(2):103–111

    Google Scholar 

  77. Timofeeva EV, Routbourt JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 106(1):014304

    Google Scholar 

  78. Einstein A (1906) Eine neue bestimmung der moleküldimensionen. Ann Phys 324(2):289–306

    MATH  Google Scholar 

  79. Wen D, Ding Y (2006) Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids). IEEE Trans Nanotechnol 5:220–226

    Google Scholar 

  80. Lee J, Mudawar I (2007) Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf 50:452–463

    Google Scholar 

  81. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571–571

    Google Scholar 

  82. Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51(2):273–299

    MATH  Google Scholar 

  83. Graham AL (1981) On the viscosity of suspensions of solid spheres. Appl Sci Res 37(3):275–286

    MATH  Google Scholar 

  84. Frankel NA, Acrivos A (1967) On the viscosity of concentrated suspensions of solid spheres. Chem Eng Sci 22(6):847–853

    Google Scholar 

  85. Godson L, Raja B, Lal DM, Wongwises S (2012) Convective heat transfer characteristics of silver-water nanofluid under laminar and turbulent flow conditions. J Therm Sci Eng Appl 4:031001

    Google Scholar 

  86. Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E: Technol Sci 45(4):408–416

    Google Scholar 

  87. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Google Scholar 

  88. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Google Scholar 

  89. Heris SZ, Etemad G, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convection heat transfer. Int Commun Heat Mass Transf 33:529–535

    Google Scholar 

  90. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281

    MATH  Google Scholar 

  91. Ding Y, Chen H, He Y, Lapkin A, Yeganeh M, Siller L, Butenko YV (2007) Forced convective heat transfer of nanofluids. Adv Powder Technol 18:813–824

    Google Scholar 

  92. Willians W, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130:042412

    Google Scholar 

  93. Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199

    MATH  Google Scholar 

  94. Jung J-Y, Oh H-S, Kwak H-Y (2009) Forced convective heat transfer of nanofluids in microchannels. Int J Heat Mass Transf 52:466–472

    Google Scholar 

  95. Rea U, McKrell T, Hu LW, Buongiorno J (2009) Laminar convective heat transfer and viscous pressure loss of alumina-water nanofluids. Int J Heat Mass Transf 52:2042–2048

    Google Scholar 

  96. Anoop KB, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf 52:2189–2195

    MATH  Google Scholar 

  97. Amrollahi A, Rashidi AM, Lotfi R, Meibodi EM, Kashefi K (2010) Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int Commun Heat Mass Transf 37:717–723

    Google Scholar 

  98. Liu ZH, Liao L (2010) Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added. Int J Therm Sci 49:2331–2338

    Google Scholar 

  99. Asirvatham LG, Raja B, Lal DM, Wongwises S (2011) Convective heat transfer of nanofluids with correlation. Particuology 9:626–631

    Google Scholar 

  100. Hojjat M, Etemad SG, Bagheri R, Thibault J (2011) Turbulent forced convection heat transfer of non-Newtonian nanofluids. Exp Therm Fluid Sci 35:1351–1356

    Google Scholar 

  101. Nasiri M, Etemad SG, Bagheri R (2011) Turbulent convective heat transfer of nanofluids through a square channel. Korean J Chem Eng 28:2230–2235

    Google Scholar 

  102. Suresh S, Chandrasekar M, Sekhar SC (2011) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in helically dimpled tube. Exp Therm Fluid Sci 35:542–549

    Google Scholar 

  103. Utomo AT, Poth H, Robbins TP, Pacek AW (2012) Experimental and theoretical studies on thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf 55:7772–7781

    Google Scholar 

  104. Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci 44:483–489

    Google Scholar 

  105. Peyghambarzadeh SM, Shapouri S, Aslanzadeh N, Rahimnejad M (2013) Thermal performance of different working fluids in a dual diameter circular heat pipe. Ain Shams Eng J 4:855–861

    Google Scholar 

  106. Sahin B, Gültekin GG, Manay E, Karagoz S (2013) Experimental investigation of heat transfer and pressure drop characteristics of Al2O3-water nanofluid. Exp Therm Fluid Sci 50:21–28

    Google Scholar 

  107. Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G (2014) Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transf 59:30–38

    Google Scholar 

  108. Chougule SS, Sahu SK (2014) Thermal performance of automobile radiator using carbon nanotube-water nanofluid—experimental study. J Therm Sci Eng Appl 6:041009

    Google Scholar 

  109. Sun B, Lei W, Yang D (2015) Flow and convective heat transfer characteristics of Fe2O3-water nanofluids inside copper tubes. Int Commun Heat Mass Transf 64:21–28

    Google Scholar 

  110. Karimzadehkhouei M, Yalcin SE, Sendur K, Mengüç MP, Kosar A (2015) Pressure drop and heat transfer characteristics of nanofluids in horizontal microtubes under thermally developing flow conditions. Exp Therm Fluid Sci 67:37–47

    Google Scholar 

  111. Gómez AOC, Hoffmann ARK, Bandarra Filho EP (2015) Experimental evaluation of CNT nanofluids in single-phase flow. Int J Heat Mass Transf 86:277–287

    Google Scholar 

  112. Li Y, Fernández-Seara J, Du K, Pardiñas AA, Latas LL, Jiang W (2016) Experimental investigation on heat transfer and pressure drop of ZnO/ethylene glycol-water nanofluids in transition flow. Appl Therm Eng 93:537–548

    Google Scholar 

  113. Colla L, Fedele L, Manca O, Marinelli L, Nardini S (2016) Experimental and numerical investigation on forced convection in circular tubes with nanofluids. Heat Transf Eng 37:1201–1210

    Google Scholar 

  114. Selvam C, Irshad MEC, Lal DM, Harish S (2016) Convective heat transfer characteristics of water-ethylene glycol mixture with silver nanoparticles. Exp Therm Fluid Sci 77:188–196

    Google Scholar 

  115. Sundar LS, Otero-Irurueta G, Singh MK, Souza ACM (2016) Heat transfer and friction factor of multi-walled carbon nanotubes-Fe3O4 nanocomposite nanofluids flow in a tube with/without longitudinal strip inserts. Int J Heat Mass Transf 100:691–703

    Google Scholar 

  116. Zarringhalam M, Karimipour A, Toghraie D (2016) Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-Water nanofluid. Exp Therm Fluid Sci 76:342–351

    Google Scholar 

  117. Gómez AOC, Alegrias JGP, Bandarra Filho EP (2017) Experimental analysis of the thermal-hydraulic performance of water based silver and SWCNT nanofluids in single-phase flow. Appl Therm Eng 124:1176–1188

    Google Scholar 

  118. Moreira TA, Alvariño PF, Cabezas-Gómez L, Ribatski G (2017) Experimental and numerical study of slightly loaded water alumina nanofluids in the developing region of a 1.1 mm in diameter pipe and convective enhancement evaluation. Int J Heat Mass Transf 115:317–335

    Google Scholar 

  119. Heyhat MM, Kowsary F (2010) Effect of particle migration on flow and convective heat transfer of nanofluids through a circular pipe. J Heat Transf 132:062401

    Google Scholar 

  120. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Google Scholar 

  121. Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf 53:972–981

    Google Scholar 

  122. Vafaei S, Borca-Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des 92:842–856

    Google Scholar 

  123. White SB, Shih AJ, Pipe KP (2010) Effects of nanoparticle layering on nanofluid and base fluid pool boiling heat transfer from a horizontal surface under atmospheric pressure. J Appl Phys 107:1143021

    Google Scholar 

  124. Vafei S, Wen D (2010) Critical Heat Flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. J Heat Transf 132(10):102404

    Google Scholar 

  125. Souza RR, Passos JC, Cardoso EM (2014) Influence of nanoparticle size and gap size on nucleate boiling using HFE7100. Exp Therm Fluid Sci 59:195–201

    Google Scholar 

  126. Kim SJ, McKrell T, Buongiorno J, Hu LW (2009) Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids. J Heat Transf 131:0432041

    Google Scholar 

  127. Forrest E, Williamson E, Buongiorno J, Hu LW, Rubner M, Cohen R (2010) Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf 53:58–67

    Google Scholar 

  128. Santos Filho E, Nascimento FJ, Moreira DC, Ribatski G (2018) Dynamic wettability evaluation of nanoparticles-coated surfaces. Exp Therm Fluid Sci 92:231–242

    Google Scholar 

  129. Das SK, Putra N, Roetzel W (2003) Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow 29:1237–1247

    MATH  Google Scholar 

  130. Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf 47:407–411

    Google Scholar 

  131. Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res 7:265–274

    Google Scholar 

  132. Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–4116

    Google Scholar 

  133. Park KJ, Jung D (2007) Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int J Heat Mass Transf 50:4499–4502

    MATH  Google Scholar 

  134. Narayan GP, Anoop KB, Das SK (2007) Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. J Appl Phys 102:074317

    Google Scholar 

  135. Liu Z, Xiong J, Bao R (2007) Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int J Multiph Flow 33:1284–1295

    Google Scholar 

  136. Kim SJ, Bang IC, Buongiorno J, Hu LW (2007) Surface wettability during pool boiling of nanofluids and its effects on critical heat flux. Int J Heat Mass Transf 50:4105–4116

    Google Scholar 

  137. Kim H, Buongiorno J, Hu LW, McKrell T, Dewitt G (2008) Experimental study on quenching of a small metal sphere in nanofluids. In: ASME International mechanical engineering congress and exposition, Boston, USA

  138. Trisaksri V, Wongwises S (2009) Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. Int J Heat Mass Transf 52:1582–1588

    Google Scholar 

  139. Park KJ, Jung D, Shin SE (2009) Nucleate heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes. Int J Multiph Flow 35:525–532

    Google Scholar 

  140. Kedzierski MA, Gong M (2009) Effect of CuO nanolubricant on R134a pool boiling heat transfer. Int J Refrig 32:791–799

    Google Scholar 

  141. Suriyawong A, Wongwises S (2010) Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations. Exp Therm Fluid Sci 34:992–999

    Google Scholar 

  142. Kathiravan R, Kumar R, Gupta A, Chandra R (2010) Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf 53:1673–1681

    Google Scholar 

  143. Okawa T, Kamiya T (2010) Experimental studies on pool boiling characteristics of titanium dioxide water nanofluids. In: 18th International conference on nuclear engineering, Xi’an, China

  144. Peng H, Ding G, Hu H, Jiang Y (2010) Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant-oil mixture. Int J Therm Sci 49:2428–2438

    Google Scholar 

  145. Liu ZH, Yang XF, Xiong JG (2010) Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures. Int J Therm Sci 49:1156–1164

    Google Scholar 

  146. Kedzierski MA (2011) Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int J Refrig 34:498–508

    Google Scholar 

  147. Heris SZ (2011) Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol-water nanofluids. Int Commun Heat Mass Transf 38:1470–1473

    Google Scholar 

  148. Cieslinski JT, Kaczmarczyk TZ (2011) Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Res Lett 6:220–228

    Google Scholar 

  149. Huang CK, Lee CW, Wang KC (2011) Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf 54:4895–4903

    Google Scholar 

  150. Kathiravan R, Kumar R, Gupta A, Chandra R, Jain PK (2011) Pool boiling characteristics of multiwalled carbon nanotube (CNT) based nanofluids over a flat plate heater. Int J Heat Mass Transf 54:1289–1296

    Google Scholar 

  151. Yang XF, Liu ZH (2011) Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int J Therm Sci 50:2402–2412

    Google Scholar 

  152. Ahmed O, Hamed MS (2012) Experimental investigation of the effect of particle deposition on pool boiling of nanofluids. Int J Heat Mass Transf 55:3423–3436

    Google Scholar 

  153. Wen D (2012) Influence of nanoparticles on boiling heat transfer. Appl Therm Eng 41:2–9

    Google Scholar 

  154. Kathiravan R, Kumar R, Gupta A, Chandra R (2012) Preparation and pool boiling characteristics of silver nanofluids over a flat plate heater. Heat Transf Eng 32:69–78

    Google Scholar 

  155. Kole M, Dey TK (2012) Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids. Appl Therm Eng 37:112–119

    Google Scholar 

  156. Duangthongsuk W, Yiamsawasd T, Selim Dalkilic A (2013) Pool-boiling heat transfer characteristics of Al2O3-water nanofluids on a horizontal cylindrical heating surface. Curr Nanosci 9:56–60

    Google Scholar 

  157. Shahmoradi Z, Etesami N, Esfahany MN (2013) Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int Commun Heat Mass Transf 47:113–120

    Google Scholar 

  158. Shoghl SN, Bahrami M (2013) Experimental investigation on pool boiling heat transfer of ZnO, and CuO water-based nanofluids and effect of surfactant on heat transfer coefficient. Int Commun Heat Mass Transf 45:122–129

    Google Scholar 

  159. Raveshi MR, Keshavarz A, Mojarrad MS, Amiri S (2013) Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Exp Therm Fluid Sci 44:805–814

    Google Scholar 

  160. Mohamadifard K, Heris SZ, Honarmand M (2014) Experimental investigation of pool boiling performance of alumina/ethylene-glycol/water (60/40) nanofluids. J Thermophys Heat Transf 28:724–734

    Google Scholar 

  161. Naphon P, Thongjing C (2014) Pool boiling heat transfer characteristics of refrigerant-nanoparticle mixtures. Int Commun Heat Mass Transf 52:84–89

    Google Scholar 

  162. Cieslinski JT, Krygier KA (2014) Augmentation of the critical heat flux in water-Al2O3, water-TiO2 and water-Cu nanofluids. In: 10th International conference on heat transfer, fluid mechanics and thermodynamics, Orlando, USA

  163. Kedzierski MA (2015) Effect of concentration on R134a/Al2O3 nanolubricant mixture on a reentrant cavity surface. Int J Refrig 49:36–48

    Google Scholar 

  164. Cieslinski JT, Kaczmarczyk TZ (2015) Pool boiling of water-Al2O3 and water-Cu nanofluids outside porous coated tubes. Heat Transf Eng 36:553–563

    Google Scholar 

  165. Sarafraz MM, Hormozi F (2015) Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. Int J Therm Sci 90:224–237

    Google Scholar 

  166. Hu Y, Li H, He Y, Wang L (2016) Role of nanoparticle on boiling heat transfer performance of ethylene glycol aqueous solution based graphene nanosheets nanofluid. Int J Heat Mass Transf 96:565–572

    Google Scholar 

  167. Sarafraz MM, Hormozi F (2016) Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int J Therm Sci 100:255–266

    Google Scholar 

  168. Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2016) Pool boiling heat transfer to dilute alumina nano-fluids on the plain and concentric circular micro-structures (CCM) surfaces. Exp Therm Fluid Sci 72:125–139

    Google Scholar 

  169. Ciloglu D (2017) An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transf Eng 38:919–930

    Google Scholar 

  170. Manetti LL, Stephen MT, Beck PA, Cardoso EM (2017) Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid. Exp Therm Fluid Sci 87:191–200

    Google Scholar 

  171. Das SK, Narayan GP, Baby AK (2008) Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness. J Nanopart Res 10(7):1099–1108

    Google Scholar 

  172. Kiyomura IS, Manetti LL, Cunha AP, Ribatski G, Cardoso EM (2016) Analysis of the effects of nanoparticles deposition on characteristics of the heating surface and on pool boiling of water. Int J Heat Mass Transf 106:666–674

    Google Scholar 

  173. Kim SJ, Bang IC, Buongiorno J, Hu LW (2006) Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett 89:153107

    Google Scholar 

  174. Bartelt K, Park Y, Liu L, Jacobi A (2008) Flow-boiling of R134a/POE/CuO nanofluids in a horizontal tube. In: International refrigeration and air conditioning conference, Purdue, USA

  175. Peng H, Ding G, Jiang W, Hu H, Gao Y (2009) Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig 32:1259–1270

    Google Scholar 

  176. Henderson K, Park YG, Liu L, Jacobi AM (2010) Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf 53:944–951

    Google Scholar 

  177. Boudouh M, Gualous HL, De Labachelerie M (2010) Local convective boiling heat transfer and pressure droop of nanofluid in narrow rectangular channels. Appl Therm Eng 30:2619–2631

    Google Scholar 

  178. Abedini E, Behzadmehr A, Rajabnia H, Sarvari SMH, Mansouri SH (2012) Experimental investigation and comparison of subcooled flow boiling of TiO2 nanofluid in a vertical and horizontal tube. J Mech Eng Sci 227:1742–1753

    Google Scholar 

  179. Xu L, Xu J (2012) Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel. Int J Heat Mass Transf 55:5673–5686

    Google Scholar 

  180. Yang XF, Liu ZH (2012) Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. Int J Heat Mass Transf 55:7375–7384

    Google Scholar 

  181. Mahbubul IM, Saidur R, Amalina MA (2013) Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube. Procedia Eng 56:323–329

    Google Scholar 

  182. Chehade AA, Gualous HL, Le Masson S, Fardoun F, Besqet A (2013) Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Res Lett 8:1–20

    Google Scholar 

  183. Rana KB, Rajvanshi AK, Agrawal GD (2013) A visualization study of flow boiling heat transfer with nanofluids. J Vis 16:133–143

    Google Scholar 

  184. Diao YH, Liu Y, Wang R, Zhao YH, Guo L, Tang X (2013) Effects of nanofluids and nanocoating on thermal performance of an evaporator with rectangular microchannels. Int J Heat Mass Transf 67:183–193

    Google Scholar 

  185. Akhavan-Behabadi MA, Nars M, Baqeri S (2014) Experimental investigation of flow heat transfer of R-600a/oil/CuO in a plain horizontal tube. Exp Therm Fluid Sci 58:105–111

    Google Scholar 

  186. Rana KB, Agrawal GD, Mathur J, Puli U (2014) Measurement of void fraction in flow boiling of ZnO-water nanofluids using image processing technique. Nucl Eng Des 270:217–226

    Google Scholar 

  187. Sun B, Yang D (2014) Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube. Int J Refrig 38:206–214

    Google Scholar 

  188. Sarafraz MM, Hormozi F (2014) Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside annular heat exchanger. Int Commun Heat Mass Transf 53:116–123

    Google Scholar 

  189. Sarafraz MM, Hormozi F (2014) Forced convective and nucleate flow boiling heat transfer to alumina nanofluids. Period Polytech 58:37–46

    Google Scholar 

  190. Duursma G, Sefiane K, Dehaene A, Harmand S, Wang Y (2015) Flow and heat transfer of single and two-phase boiling of nanofluids in microchannels. Heat Transf Eng 36:1252–1265

    Google Scholar 

  191. Yu L, Sur A, Liu D (2015) Flow boiling heat transfer and two-phase flow instability of nanofluids in a minichannel. J Heat Transf 137:051502

    Google Scholar 

  192. Setoodeh H, Keshavarz A, Ghasemian A, Nasouhi A (2015) Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: an experimental study. Appl Therm Eng 90:384–394

    Google Scholar 

  193. Nikkhah V, Sarafraz MM, Hormozi F (2015) Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q 29:405–415

    Google Scholar 

  194. Rajabnia H, Abedini E, Tahmasbi A, Behzadmehr A (2016) Experimental investigation of subcooled flow boiling of water/TiO2 nanofluid in a horizontal tube. Therm Sci 20:99–108

    Google Scholar 

  195. Wang Y, Hu GH (2016) Experimental investigation on nanofluid flow boiling heat transfer in a vertical tube under different pressure conditions. Exp Therm Fluid Sci 77:116–123

    Google Scholar 

  196. Tazarv S, Saffar-Avval M, Khalvati F, Mirzaee E, Mansoori Z (2016) Experimental investigation of saturated flow boiling heat transfer to TiO2/R141b nanorefrigerant. Exp Heat Transf 29:188–204

    Google Scholar 

  197. Sarafraz MM, Hormozi F (2016) Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technol 287:412–430

    Google Scholar 

  198. Karimzadehkhouei M, Sezen M, Sendur K, Mengüç MP, Kosar A (2017) Subcooled flow boiling heat transfer of γ-Al2O3/water nanofluids in horizontal microtubes and the effect of surface characteristics and nanoparticle deposition. Appl Therm Eng 127:536–546

    Google Scholar 

  199. Moreira TA, Nascimento FJ, Ribatski G (2017) An investigation of the effect of nanoparticle composition and dimension on the heat transfer coefficient during flow boiling of aqueous nanofluids in small diameter channels (1.1 mm). Exp Therm Fluid Sci 89:72–89

    Google Scholar 

  200. Sarafraz MM, Hormozi F (2014) Scale formation and subcooled flow boiling heat transfer of CuO-water nanofluid inside the vertical annulus. Exp Therm Fluid Sci 52:205–214

    Google Scholar 

  201. Kandlikar SG, Mizo VR, Cartwright MD (1997) Bubble nucleation and growth characteristics in subcooled flow boiling of water. In: ASME 32nd national heat transfer conference, Baltimore, USA

  202. Liu Z, Winterton RHS (1991) A general correlation for saturation and subcooled flow boiling in tubes and annuli based on a nucleate pool boiling equation. Int J Heat Mass Transf 34:2759–2766

    Google Scholar 

  203. Cooper MG (1984) Saturation nucleate boiling: a simple correlation. In: 1st UK national conference on heat transfer, vol 2, pp 785–793

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by CAPES (Coordination for the Improvement of Higher Level Personal, Brazil) through the NANOBIOTEC research program, CNPq (National Council for Scientific and Technological Development, Brazil) under Contract Numbers 303852/2013-5, 404437/2015-0 and 131082/2015-9. The authors also acknowledge the FAPESP (São Paulo State Research Foundation, Brazil) for the scholarships under Contract Numbers 2016/16849-3, and 2015/24834-3 and the research Grant 2016/09509-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Carneiro Moreira.

Additional information

Technical Editor: Francis HR Franca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, T.A., Moreira, D.C. & Ribatski, G. Nanofluids for heat transfer applications: a review. J Braz. Soc. Mech. Sci. Eng. 40, 303 (2018). https://doi.org/10.1007/s40430-018-1225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1225-2

Keywords

Navigation