Advertisement

Optimization of processing parameters of cooling slope process for semi-solid casting of ADC 12 Al alloy

  • Sujeet Kumar Gautam
  • Nilrudra Mandal
  • Himadri Roy
  • Aditya Kumar Lohar
  • Sudip Kumar Samanta
  • Goutam Sutradhar
Technical Paper
  • 47 Downloads

Abstract

In the present work, the effect of processing parameters of cooling slope techniques (pouring temperature, slope angle and slope length) of ADC 12 Al alloy on its microstructural evolution has been studied in detail. A series of cooling slope casting experiments were conducted by varying the pouring temperature (580, 585 and 590 °C), slope length (400, 500 and 600 mm) and slope angle (30°, 45° and 60°). The effect of processing parameters on the response factors, viz. degree of sphericity and particle size, has been investigated by applying analysis of variance (ANOVA), interaction graphs obtained using response surface methodology. The obtained results infer that optimum values of the degree of sphericity (0.865) and particle size (49.30) are observed for the following set of processing parameters, namely 585 °C pouring temperature, 500 mm slope length and 45° slope angle. ANOVA results show that the pouring temperature is the most significant input variables that influence degree of sphericity and particle size followed by slope length and slope angle. The values of output variables obtained from confirmation experiment, performed at 95% confidence level, ensure that they are well within the permissible limits.

Keywords

Semi-solid processing Cooling slope process Response surface methodology ANOVA 

Notes

Acknowledgements

The authors would like to thank Director, CSIR-Central Mechanical Engineering Research Institute (CMERI) for his kind permission to carry out and publish this work. The authors would like to acknowledge the help rendered by Central Research Facility, CMERI-Durgapur, for material characterization. The authors express their heartfelt gratitude to AdMaC Group (Anmol Khalkho and Anup Rajak) staffs for their support throughout the work.

References

  1. 1.
    Gencalp S, Saklakoglu N (2010) Semisolid microstructure evolution during cooling slope casting under vibration of A380 aluminum alloy. Mater Manuf Process 25:943–947CrossRefGoogle Scholar
  2. 2.
    Taghavi F, Ghassemi A (2009) Study on the effects of the length and angle of inclined plate on the thixotropic microstructure of A356 aluminum alloy. Mater Des 30:1762–1767CrossRefGoogle Scholar
  3. 3.
    Spencer DB, Mehrabian R, Flemings MC (1972) Rheological behavior of Sn-15 pct Pb in the crystallization range. Metal Mater Trans B 3:1925–1932CrossRefGoogle Scholar
  4. 4.
    Flemings MC (1991) Behavior of metal alloys in the semisolid state. Metal Mater Trans A22:957–981CrossRefGoogle Scholar
  5. 5.
    Park C, Kim S, Kwon Y, Lee Y, Lee J (2005) Mechanical and corrosion properties of rheocast and low-pressure cast A356-T6 alloy. Mater Sci Eng A 391:86–94CrossRefGoogle Scholar
  6. 6.
    Alhawari KS, Omar MZM, Ghazali J, Salleh MS, Mohammed MN (2017) Microstructural evolution during semisolid processing of Al–Si–Cu alloy with different Mg contents. Trans Nonferr Metal Soc China 27:1483–1497CrossRefGoogle Scholar
  7. 7.
    Kaykha M (2017) Effect of angle, length and circulation cooling system on microstructure A360 Aluminum alloy in semi-solid metal forming by cooling slope method. Eng Sol Mech 5:9–14CrossRefGoogle Scholar
  8. 8.
    Salleh MS, Omar MZ, Syarif J, Mohammed MN, Allawari KS (2014) Effect of pouring temperature and cooling slope length on microstructure and mechanical properties of rheocast A319 aluminium alloy. Appl Mech Mater 699:251–256CrossRefGoogle Scholar
  9. 9.
    Chen YT, Tsao CY, Chiang CH (2014) Making non-dendritic structure via modified cooling slope technique. Adv Mater Res 915:602–607CrossRefGoogle Scholar
  10. 10.
    Van Thuong NV, Zuhailawati H, Seman AA, Huy TD, Dhindaw BK (2015) Effects of processing parameters on microstructure evolution of Al–7Si–Mg alloy by cooling slope casting. J Mater Eng Prof 24:2108–2116CrossRefGoogle Scholar
  11. 11.
    Das P, Samanta SK, Das R, Dutta P (2014) Optimization of degree of sphericity of primary phase during cooling slope casting of A356 Al alloy: Taguchi method and regression analysis. Measurement 55:605–615CrossRefGoogle Scholar
  12. 12.
    Vundavilli PR, Mantry S, Mandal A, Chakraborty M (2014) A Taguchi optimization of cooling slope casting process parameters for production of semi-solid A356 alloy and A356–5TiB2 in situ composite feedstock. Proc Mater Sci 5:232–241CrossRefGoogle Scholar
  13. 13.
    Khosravi H, Eslami-Farsani R, Askari-Paykani M (2014) Modeling and optimization of cooling slope process parameters for semi-solid casting of A356 Al alloy. Trans Nonferr Metal Soc China 24:961–968CrossRefGoogle Scholar
  14. 14.
    Pouvafar V, Sadough AS, Hosseinj F, Rahmani RM (2010) Design of experiments for determination of influence of different parameters on mechanical properties of semi-solid extruded parts. Trans Nonferr Metal Soc China 20:794–797CrossRefGoogle Scholar
  15. 15.
    Tian C, Law J, Van Der Touw J, Murray M, Yao JY, Graham D, Johnd DS (2002) Effect of melt cleanliness on the formation of porosity defects in automotive aluminium high pressure die castings. J Mater Process Technol 122:82–93CrossRefGoogle Scholar
  16. 16.
    Zhao HD, Wang F, Li YY, Xia W (2009) Experimental and numerical analysis of gas entrapment defects in plate ADC12 die castings. J Mater Process Technol 209:4537–4542CrossRefGoogle Scholar
  17. 17.
    Janudom S, Rattanochaikul T, Burapa R, Wisutmethangoon S, Wannasin J (2010) Feasibility of semi- solid die casting of ADC12 aluminum alloy. Trans Nonferr Metal Soc China 20:1756–1762CrossRefGoogle Scholar
  18. 18.
    Wang Z, Ji Z, Hu M, Xu H (2011) Evolution of the semi-solid microstructure of ADC12 alloy in a modified SIMA process. Mater Character 62:925–930CrossRefGoogle Scholar
  19. 19.
    Hu ZH, Wu GH, Zhang P, Ding WJ (2013) Rheo-processing of near-eutectic ADC12 alloy. Sol Stat Phenom 192:116–122Google Scholar
  20. 20.
    Hu ZH, Wu GH, Zhang P, Liu WC, Song PANG, Zhang L, Ding WJ (2016) Primary phase evolution of rheo-processed ADC12 aluminum alloy. Trans Nonferr Metal Soc China 26:19–27CrossRefGoogle Scholar
  21. 21.
    Hu ZH, Xiang PENG, Wu GH, Cheng DQ, Liu WC, Zhang L, Ding WJ (2016) Microstructure evolution and mechanical properties of rheo-processed ADC12 alloy. Trans Nonferr Metal Soc China 26:3070–3080CrossRefGoogle Scholar
  22. 22.
    Kanazawa K, Shibayama K (1997) Effect of heat treatment on fracture toughness and fatigue crack growth characteristics of aluminum alloy die castings. Trans Jpn Socmech Eng 63:478–486CrossRefGoogle Scholar
  23. 23.
    Burapa R, Janudom S, Chucheep T, Canyook R, Wannasin J (2010) Effects of primary phase morphology on mechanical properties of Al–Si–Mg–Fe alloy in semi-solid slurry casting process. Trans Nonferr Metal Soc China 20:s857–s861CrossRefGoogle Scholar
  24. 24.
    Chen CL, Thomson RC (2010) Study on thermal expansion of intermetallics in multicomponent Al–Si alloys by high temperature X-ray diffraction. Intermetallics 18:1750–1757CrossRefGoogle Scholar
  25. 25.
    Jana S, Mishra RS, Baumann JB, Grant G (2010) Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6Mg alloy. Acta Mater 58:989–1003CrossRefGoogle Scholar
  26. 26.
    Saklakoglu N, Gencalp S, Kasman S, Saklakoglu IE (2011) Formation of globular microstructure in A380 aluminum alloy by cooling slope casting. Adv Mater Res 264:272–277CrossRefGoogle Scholar
  27. 27.
    Thaga T, Kapranos P (2002) Simple rheocasting processes. J Mater Proces Technol 130:594–598Google Scholar
  28. 28.
    Birol Y (2007) A357 thixoforming feedstock produced by cooling slope casting. J Mater Proces Technol 186:94–101CrossRefGoogle Scholar
  29. 29.
    Chen ZZ, Mao WM, Wu ZC (2011) Influence of serpentine channel pouring process parameters on semi-solid A356 aluminum alloy slurry. Trans Nonferr Metal Soc China 21:985–990CrossRefGoogle Scholar
  30. 30.
    Motegi T, Tanabe F, Sugiura E (2002) Continuous casting of semisolid aluminium alloys. Mater Sci Forum 396:203–208CrossRefGoogle Scholar
  31. 31.
    Liu W, Tan JB, Li JQ, Ding X (2011) Influence of process parameters by vibrational cooling-shearing slope on microstructures of semi-solid ZAlSi9Mg alloy. Adv Mater Res 211:142–146CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Sujeet Kumar Gautam
    • 1
    • 4
  • Nilrudra Mandal
    • 2
  • Himadri Roy
    • 3
  • Aditya Kumar Lohar
    • 1
  • Sudip Kumar Samanta
    • 1
  • Goutam Sutradhar
    • 4
  1. 1.Advanced Manufacturing CentreCSIR-Central Mechanical Engineering Research InstituteDurgapurIndia
  2. 2.Centre for Advanced Materials ProcessingCSIR-Central Mechanical Engineering Research InstituteDurgapurIndia
  3. 3.NDT and Metallurgy GroupCSIR-Central Mechanical Engineering Research InstituteDurgapurIndia
  4. 4.Department of Mechanical EngineeringJadavpur UniversityCalcuttaIndia

Personalised recommendations