Direct numerical simulation of the flow around a cylinder with splitter plate: analysis for moderated Reynolds numbers

Abstract

The splitter plate has been one of the most successful devices in controlling the vortex shedding in the wake of the cylinder. In the present work, direct numerical simulations of the flow around a cylinder with a fixed plate are conducted. The Reynolds numbers studied, which are based on the cylinder diameter, were \(Re=100\), 160, 300 and 1250, and the plate dimensionless length has been varied up to twelve times the cylinder diameter. The present work aimed to determine the optimum length of the plate, in the range of Re studied, for which occur the minimum Strouhal number, mean drag coefficient and lift coefficient root mean square. In this report, the plate has been effective in attenuating the vortex shedding, the Reynolds stresses and the turbulent kinetic energy, in good agreement with experimental data. The flow characteristics showed considerable dependence on the splitter plate length for Reynolds numbers in the laminar regime (\(Re\le 300\)), while for the subcritical regime (\(Re=1250\)) it exerted less influence.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    This open source code is available at www.incompact3d.com.

References

  1. 1.

    Akilli H, Karakus C, Akar A, Sahin B, Tumen NF (2008) Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate. J Fluids Eng 130:041401

    Article  Google Scholar 

  2. 2.

    Apelt CJ, West GS (1973) The effects of wake splitter plates on bluff-body flow in the range \(10^{4} < Re < 5.10^{4}\). Part 1. J Fluid Mech 61:187–198

    Article  Google Scholar 

  3. 3.

    Apelt CJ, West GS (1973) The effects of wake splitter plates on bluff-body flow in the range \(10^{4} < Re < 5.10^{4}\). Part 2. J Fluid Mech 71:145–160

    Article  Google Scholar 

  4. 4.

    Bearman PW (1965) Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J Fluid Mech 21(part 2):241–255

    Article  Google Scholar 

  5. 5.

    Blevins RD (2001) Flow induced vibration. Van Nostrand Reinhold Co., New York

    Google Scholar 

  6. 6.

    Bloor MS, Gerrard JH (1966) Measurements on turbulent vortices in a cylinder wake. Proc R Soc Ser A 294:319–342

    Article  Google Scholar 

  7. 7.

    Choi H, Jeon WP, Kim J (2008) Control of flow over a bluff body. Annu Rev Fluid Mech 40:113–139

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cimbala JM, Garg S (1991) Flow in the wake of a freely rotatable cylinder with splitter plate. AIAA J 29(6):1001–1003

    Article  Google Scholar 

  9. 9.

    Dubief Y, Delcayre F (2000) On coherent-vortex identification in turbulence. J Turbul 1:011

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gerrard JH (1966) The mechanics of the formation region of vortices behind bluff bodies. J Fluid Mech 25:25–40

    Google Scholar 

  11. 11.

    Kumar RA, Sohn C, Gowda JL (2008) Passive control of vortex-induced vibrations: an overview. Recent Pat Mech Eng 1:1–11

    Article  Google Scholar 

  12. 12.

    Kwon K, Choi H (1996) Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids 8(2):476–486

    Article  Google Scholar 

  13. 13.

    Laizet S, Lamballais E (2009) High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J Comput Phys 228:5989–6015

    MathSciNet  Article  Google Scholar 

  14. 14.

    Laizet S, Li N (2011) Incompact3d: a powerful tool to tackle turbulence problems with up to O(\(10^5\)) computational cores. Int J Numer Methods Fluids 67:1735–1757

    Article  Google Scholar 

  15. 15.

    Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42

    MathSciNet  Article  Google Scholar 

  16. 16.

    Mittal R, Balachandar S (1997) On the inclusion of three-dimensional effects in simulation of two-dimensional bluff-body wake flows. In: Proceedings of the 1997 ASME fluids engineering division summer meeting, Vancouver, pp 1–10

  17. 17.

    Nakamura Y (1996) Vortex shedding from bluff bodies with splitter plates. J Fluids Struct 10:147–158

    Article  Google Scholar 

  18. 18.

    Noca F, Park HG, Gharib M (1998) Vortex formation length of a circular cylinder (\(300 < Re < 4000\)) using DPIV. In: ASME fluids engineering division summer meeting, Washington, pp 1–7

  19. 19.

    Parnaudeau P, Heitz D, Lamballais E, Silvestrini JH (2007) Direct numerical simulations of vortex shedding behind cylinders with spanwise liagreetmentnear nonuniformity. J Turbul 8:N13

    Article  Google Scholar 

  20. 20.

    Ribeiro PAR, Schettini EBC, Silvestrini JH (2004) Bluff-bodies vortex shedding supression by direct numerical simulation. Revista da Engenharia Térmica 3(1):9

    Article  Google Scholar 

  21. 21.

    Roshko A (1954) On the drag and the shedding frequency of two-dimensional bluff bodies. NACA TN 3169

  22. 22.

    Sumer BM, Fredsøe J (1997) Hydrodynamics around cylindrical structures. World Scientific Publishing, London

    Google Scholar 

  23. 23.

    Tritton DJ (2005) Physical fluid dynamics. Clarendon Press, Oxford

    Google Scholar 

  24. 24.

    Unal MF, Rockwell D (1988) On vortex formation from a cylinder. Part 1. The initial instability. J Fluid Mech 190:491–512

    Article  Google Scholar 

  25. 25.

    Unal MF, Rockwell D (1988) On vortex formation from a cylinder. Part 2. Control by splitter-plate interference. J Fluid Mech 190:513–529

    Article  Google Scholar 

  26. 26.

    Williamson CHK (1988) The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31(11):3165–316

    MathSciNet  Article  Google Scholar 

  27. 27.

    Williamson CHK (1996) Three-dimensional wake transition. J Fluid Mech 328:345–407

    Article  Google Scholar 

  28. 28.

    Xu John C, Sen Mihir, Gad-el-Hak Mohamed (1990) Low-Reynolds number flow over a rotatable cylinder-splitter plate body. Phys Fluids A Fluid Dyn 2(11):1925–1927

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Centro Nacional de Supercomputação (CESUP) on the Universidade Federal do Rio Grande do Sul (UFRGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support (Grant No. 133525/2016-3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. A. de Araujo.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Araujo, L.A.d., Schettini, E.B.C. & Silvestrini, J.H. Direct numerical simulation of the flow around a cylinder with splitter plate: analysis for moderated Reynolds numbers. J Braz. Soc. Mech. Sci. Eng. 40, 276 (2018). https://doi.org/10.1007/s40430-018-1199-0

Download citation

Keywords

  • Fixed cylinder
  • Splitter plate
  • Vortex shedding
  • DNS