Advertisement

Direct numerical simulation of the flow around a cylinder with splitter plate: analysis for moderated Reynolds numbers

  • L. A. de Araujo
  • E. B. C. Schettini
  • J. H. Silvestrini
Technical Paper
  • 833 Downloads

Abstract

The splitter plate has been one of the most successful devices in controlling the vortex shedding in the wake of the cylinder. In the present work, direct numerical simulations of the flow around a cylinder with a fixed plate are conducted. The Reynolds numbers studied, which are based on the cylinder diameter, were \(Re=100\), 160, 300 and 1250, and the plate dimensionless length has been varied up to twelve times the cylinder diameter. The present work aimed to determine the optimum length of the plate, in the range of Re studied, for which occur the minimum Strouhal number, mean drag coefficient and lift coefficient root mean square. In this report, the plate has been effective in attenuating the vortex shedding, the Reynolds stresses and the turbulent kinetic energy, in good agreement with experimental data. The flow characteristics showed considerable dependence on the splitter plate length for Reynolds numbers in the laminar regime (\(Re\le 300\)), while for the subcritical regime (\(Re=1250\)) it exerted less influence.

Keywords

Fixed cylinder Splitter plate Vortex shedding DNS 

Notes

Acknowledgements

The authors thank the Centro Nacional de Supercomputação (CESUP) on the Universidade Federal do Rio Grande do Sul (UFRGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support (Grant No. 133525/2016-3).

References

  1. 1.
    Akilli H, Karakus C, Akar A, Sahin B, Tumen NF (2008) Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate. J Fluids Eng 130:041401CrossRefGoogle Scholar
  2. 2.
    Apelt CJ, West GS (1973) The effects of wake splitter plates on bluff-body flow in the range \(10^{4} < Re < 5.10^{4}\). Part 1. J Fluid Mech 61:187–198CrossRefGoogle Scholar
  3. 3.
    Apelt CJ, West GS (1973) The effects of wake splitter plates on bluff-body flow in the range \(10^{4} < Re < 5.10^{4}\). Part 2. J Fluid Mech 71:145–160CrossRefGoogle Scholar
  4. 4.
    Bearman PW (1965) Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J Fluid Mech 21(part 2):241–255CrossRefzbMATHGoogle Scholar
  5. 5.
    Blevins RD (2001) Flow induced vibration. Van Nostrand Reinhold Co., New YorkzbMATHGoogle Scholar
  6. 6.
    Bloor MS, Gerrard JH (1966) Measurements on turbulent vortices in a cylinder wake. Proc R Soc Ser A 294:319–342CrossRefGoogle Scholar
  7. 7.
    Choi H, Jeon WP, Kim J (2008) Control of flow over a bluff body. Annu Rev Fluid Mech 40:113–139MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cimbala JM, Garg S (1991) Flow in the wake of a freely rotatable cylinder with splitter plate. AIAA J 29(6):1001–1003CrossRefGoogle Scholar
  9. 9.
    Dubief Y, Delcayre F (2000) On coherent-vortex identification in turbulence. J Turbul 1:011MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gerrard JH (1966) The mechanics of the formation region of vortices behind bluff bodies. J Fluid Mech 25:25–40Google Scholar
  11. 11.
    Kumar RA, Sohn C, Gowda JL (2008) Passive control of vortex-induced vibrations: an overview. Recent Pat Mech Eng 1:1–11CrossRefGoogle Scholar
  12. 12.
    Kwon K, Choi H (1996) Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids 8(2):476–486CrossRefzbMATHGoogle Scholar
  13. 13.
    Laizet S, Lamballais E (2009) High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J Comput Phys 228:5989–6015MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Laizet S, Li N (2011) Incompact3d: a powerful tool to tackle turbulence problems with up to O(\(10^5\)) computational cores. Int J Numer Methods Fluids 67:1735–1757CrossRefzbMATHGoogle Scholar
  15. 15.
    Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mittal R, Balachandar S (1997) On the inclusion of three-dimensional effects in simulation of two-dimensional bluff-body wake flows. In: Proceedings of the 1997 ASME fluids engineering division summer meeting, Vancouver, pp 1–10Google Scholar
  17. 17.
    Nakamura Y (1996) Vortex shedding from bluff bodies with splitter plates. J Fluids Struct 10:147–158CrossRefGoogle Scholar
  18. 18.
    Noca F, Park HG, Gharib M (1998) Vortex formation length of a circular cylinder (\(300 < Re < 4000\)) using DPIV. In: ASME fluids engineering division summer meeting, Washington, pp 1–7Google Scholar
  19. 19.
    Parnaudeau P, Heitz D, Lamballais E, Silvestrini JH (2007) Direct numerical simulations of vortex shedding behind cylinders with spanwise liagreetmentnear nonuniformity. J Turbul 8:N13CrossRefGoogle Scholar
  20. 20.
    Ribeiro PAR, Schettini EBC, Silvestrini JH (2004) Bluff-bodies vortex shedding supression by direct numerical simulation. Revista da Engenharia Térmica 3(1):9Google Scholar
  21. 21.
    Roshko A (1954) On the drag and the shedding frequency of two-dimensional bluff bodies. NACA TN 3169Google Scholar
  22. 22.
    Sumer BM, Fredsøe J (1997) Hydrodynamics around cylindrical structures. World Scientific Publishing, LondonCrossRefzbMATHGoogle Scholar
  23. 23.
    Tritton DJ (2005) Physical fluid dynamics. Clarendon Press, OxfordzbMATHGoogle Scholar
  24. 24.
    Unal MF, Rockwell D (1988) On vortex formation from a cylinder. Part 1. The initial instability. J Fluid Mech 190:491–512CrossRefGoogle Scholar
  25. 25.
    Unal MF, Rockwell D (1988) On vortex formation from a cylinder. Part 2. Control by splitter-plate interference. J Fluid Mech 190:513–529CrossRefGoogle Scholar
  26. 26.
    Williamson CHK (1988) The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31(11):3165–316CrossRefGoogle Scholar
  27. 27.
    Williamson CHK (1996) Three-dimensional wake transition. J Fluid Mech 328:345–407CrossRefzbMATHGoogle Scholar
  28. 28.
    Xu John C, Sen Mihir, Gad-el-Hak Mohamed (1990) Low-Reynolds number flow over a rotatable cylinder-splitter plate body. Phys Fluids A Fluid Dyn 2(11):1925–1927CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Instituto de Pesquisas HidráulicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de EngenhariaPontifícia Universidade Catolica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations