Skip to main content
Log in

Free vibration and buckling investigation of piezoelectric nano-plate in elastic medium considering nonlocal effects

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, buckling and free vibration of piezoelectric nano-plate on elastic foundation are investigated. The assumptions of nonlocal elasticity and classical plate theory are considered. The simply supported boundary conditions are considered and plate is subjected to external electric voltage. The final equations of the motion are derived using Hamilton function and solved by Navier method to find the natural frequency and critical buckling force of the nano-plate. The effect of various parameters on the plate behavior, such as nonlocal parameter, electrical voltage, and Winkler and shear modulus, is investigated and results are compared with those reported in the literature. The results show that by increasing the small-scale effects, the natural frequency and buckling load decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang SL, Zhou D, Gong S, Lu W (1998) Study of piezoelectric ceramic materials for high-temperature and high-frequency applications. Sens Actuators A Phys 69:1–4

    Article  Google Scholar 

  2. Xia R, Lebrun L, Anderson D, Shrout T (2005) Piezoelectric materials for high power, high temperature applications. Mater Lett 59:3471–3475

    Article  Google Scholar 

  3. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties (invited review). Nano Res 4:1013–1098

    Article  Google Scholar 

  4. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  5. Tanner SM et al (2007) High-QGaN nanowire resonators and scillators. Appl Phys 91:203117

    Google Scholar 

  6. Chen C et al (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505

    Article  Google Scholar 

  7. Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:7–3691

    Article  Google Scholar 

  8. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  Google Scholar 

  9. Fleck N, Hutchinson J (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Article  Google Scholar 

  10. Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46:2757–2764

    Article  Google Scholar 

  11. Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  Google Scholar 

  12. Wang YZ, Li FM (2012) Static bending behaviors of nano-plate embedded in elastic matrix with small scale effects. Mech Res Commun 41:44–48

    Article  Google Scholar 

  13. Aksencer T, Aydogdu M (2011) Levy type solution method forvibration and buckling of nano-plates using nonlocal elasticity theory. Phys E 43:954–959

    Article  Google Scholar 

  14. Farajpour A, Arab Solghar A, Shahidi A (2013) Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Phys E 47:197–206

    Article  Google Scholar 

  15. Malekzadeh P, Setoodeh AR, Beni AA (2011) Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nano-plates. Compos Struct 93:1631–1639

    Article  Google Scholar 

  16. Setoodeh A, Malekzadeh P, Vosoughi A (2012) Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory. Proc Inst Mech Eng Part C J Mech Eng Sci 226:1896–1906

    Article  Google Scholar 

  17. Asemi SR, Farajpour A, Mohammadi M (2014) Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory. Compos Struct 116:703–712

    Article  Google Scholar 

  18. Ke LL, Wang YS (2012) Thermoelectric-mechanical vibration of piezoelectric nano beams based on the nonlocal theory. Smart Mater Struct 21:025018

    Article  Google Scholar 

  19. Ke LL, Wang YS, Wang ZD (2012) Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct 94:2038–2047

    Article  Google Scholar 

  20. Liu C et al (2014) Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings. Int J Struct Stab Dyn 14:1350067

    Article  MathSciNet  Google Scholar 

  21. Liu C et al (2013) Thermo-electro-mechanical vibration of piezoelectric nano-plates based on the nonlocal theory. Compos Struct 106:167–174

    Article  Google Scholar 

  22. Ke LL, Liu C, Wang YS (2014) Free vibration of nonlocal piezoelectric nano-plates under various boundary conditions. Phys E 66:93–106

    Article  Google Scholar 

  23. Wang YZ, Li FM, Kishimoto K (2012) Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model. ASME J Vib Acoust 134(3):031011

    Article  Google Scholar 

  24. Wang YZ, Li FM (2014) Nonlinear free vibration of nanotube with small scale effects embedded in viscous matrix. Mech Res Commun 60:45–51

    Article  Google Scholar 

  25. Wang YZ, Li FM (2014) Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int J Non Linear Mech 61:74–79

    Article  Google Scholar 

  26. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Behjat.

Additional information

Technical Editor: Aline Souza de Paula.

Appendix

Appendix

$$ \begin{aligned} A = & - D_{11} \alpha^{4} - 2D_{12} \alpha^{2} \beta^{2} - D_{11} \beta^{4} - 4D_{66} \alpha^{2} \beta^{2} - k_{w} \left( {1 + \mu \left( {\alpha^{2} + \beta^{2} } \right)} \right) \\ & \; - k_{\text{g}} \left( {\alpha^{2} + \beta^{2} + \mu \left( {\alpha^{4} + 2\alpha^{2} \beta^{2} + \beta^{4} } \right)} \right) + \omega^{2} \rho h\left( {1 + \mu \left( {\alpha^{2} + \beta^{2} } \right)} \right) + \left( { - \bar{N}_{xx} + 2e_{31} V_{0} } \right)\left( {\alpha^{2} + \mu \left( {\alpha^{4} + \alpha^{2} \beta^{2} } \right)} \right) \\ & \; + \left( { - \bar{N}_{yy} + 2e_{31} V_{0} } \right)\left( {\beta^{2} + \mu \left( {\beta^{4} + \alpha^{2} \beta^{2} } \right)} \right). \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastami, M., Behjat, B. Free vibration and buckling investigation of piezoelectric nano-plate in elastic medium considering nonlocal effects. J Braz. Soc. Mech. Sci. Eng. 40, 281 (2018). https://doi.org/10.1007/s40430-018-1196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1196-3

Keywords

Navigation