Skip to main content
Log in

Modeling of emerged semi-circular breakwater performance against solitary waves using SPH method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The semicircular breakwater (SBW) is a composite breakwater consisting of a hollow empty reinforced concrete caisson seated on the rubble mound breakwater. In this research, smoothed particle hydrodynamics (SPH) method was used to examine the run-up and overtopping of solitary waves on SBW. At first the SPH model was validated for regular wave–SBW interaction against experimental results. Comparisons showed that the present modified numerical model has a good agreement with experimental data. Parametric study was then performed on the effect of water depth and wave height of the single solitary waves and height of the rubble mound on wave run-up. Furthermore, double solitary waves were generated to study their interaction with SBW by the model. Run-up and reflection coefficient for double solitary wave–structure interaction was then investigated. The results show that in sum run-up in double solitary wave mode is smaller than that of single solitary wave. Moreover, the second solitary wave run-up is smaller than that of the first solitary wave in double solitary wave train. Overtopping discharge of double solitary wave is nearly constant for τ/T greater than 1.3, where τ/T is the ratio of time distance between wave crests of double wave to effective period of single solitary wave. Also overtopping discharge decreases with increasing in τ/T for its value smaller than 1.3. The results show that this model is a useful tool for simulating the interaction of solitary waves–structures with complicated geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Reference

  1. Qu K, Ren XY, Kraatz S (2017) Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave. Appl Ocean Res 63:36–48. https://doi.org/10.1016/j.apor.2017.01.003

    Article  Google Scholar 

  2. Romano A, Guerrini M, Bellotti G, Lie-hong J (2014) Laboratory generation of solitary waves: an inversion technique to improve available methods. China Ocean Eng 28:57–66. https://doi.org/10.1007/s13344-014-0004-9

    Article  Google Scholar 

  3. Liu PL-F, Synolakis CE, Yeh H (1991) Report on the international workshop on long-wave run-up. J Fluid Mech 229:675–688. https://doi.org/10.1017/S0022112091003221

    Article  MATH  Google Scholar 

  4. Synolakis CE, Bernard EN (2006) Tsunami science before and beyond boxing day 2004. Philos Trans R Soc A 364:2231–2265. https://doi.org/10.1098/rsta.2006.1824

    Article  MathSciNet  Google Scholar 

  5. Wu NJ, Tsay TK, Chen YY (2014) Generation of stable solitary waves by a piston-type wave maker. Wave Motion 51:240–255. https://doi.org/10.1016/j.wavemoti.2013.07.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Wei Z, Dalrymple R, Herault A, Bilotta G, Rustico E, Yeh H (2015) SPH modeling of dynamic impact of tsunami bore on bridge piers. Coast Eng 104:26–42. https://doi.org/10.1016/j.coastaleng.2015.06.008

    Article  Google Scholar 

  7. Di Risio M, De Girolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta MG, Petrillo AF (2009) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res-Oceans 114(C1):1–16. https://doi.org/10.1029/2008JC004858

    Article  Google Scholar 

  8. Sasajima H, Koizuka T, Sasayama H (1994) Field demonstration test of a semicircular breakwater. In: Proceedings of HYDROPORT 94 Yokosuka Japan, vol 1, pp 593–610

  9. Goda Y (1974) A new method of wave pressure calculations for the design of composite breakwaters. In: Proceedings of the 14th International Conference in Coastal Engineering, Copenhagen, pp 1702–1720

  10. Sundar V, Raghu D (1997) Wave induced pressures on semicircular breakwater. In: Proceedings of 2nd Indian National Conference on Harbour and Ocean Engineering, Thiruvananthapuram, pp 278–287

  11. Sundar V, Raghu D (1998) Dynamic pressures and run-up on semicircular breakwater due to random waves. Ocean Eng 25:221–241. https://doi.org/10.1016/S0029-8018(97)00007-3

    Article  Google Scholar 

  12. Sri Krishna Priya M, Roopsekhar KA, Sundar V, Sundaravadivelu R, Graw KU, Kna S (2000) Hydrodynamic pressures on semicircular breakwaters. In: Proceedings of International Conference on Hydroscience and Engineering, Seoul, South korea

  13. Yuan D, Tao J (2003) Wave forces on submerged, alternately submerged, and emerged semicircular breakwaters. Coast Eng 48:75–93. https://doi.org/10.1016/S0378-3839(02)00169-2

    Article  Google Scholar 

  14. Dhinakaran G, Sundar V, Sundaravadivelu R, Graw KU (2008) Effect of perforations and rubble mound height on wave transformation characteristics of surface piercing semicircular breakwaters. Ocean Eng 36:1182–1198. https://doi.org/10.1016/j.oceaneng.2009.08.005

    Article  Google Scholar 

  15. Shi YJ, Wu ML, Jiang XL, Li YB (2011) Experimental researches on reflective and transmitting performances of quarter circular breakwater under regular and irregular waves. China Ocean Eng 25(3):469–478

    Article  Google Scholar 

  16. Kasem TH, Sasaki J (2010) Multiphase modeling of wave propagation over submerged obstacles using weno and level set methods. Coast Eng J 52(3):235–259. https://doi.org/10.1142/S0578563410002166

    Article  Google Scholar 

  17. Hafeeda V, Binumol S, Hegde AV, Subbarao (2014) Wave reflection by emerged seaside perforated quarter-circle breakwater. Int J Earth Sci Eng 7(2):454–460

    Google Scholar 

  18. Shao S (2005) SPH simulation of solitary wave interaction with a curtain-type breakwater. J Hydraul Res 43(4):366–375. https://doi.org/10.1080/00221680509500132

    Article  Google Scholar 

  19. Ketabdari MJ, Kamani N, Moghaddam MH (2015) WCSPH simulation of solitary wave interaction with a curtain-type breakwater. In: AIP Conference Proceedings, AIP Publishing. https://doi.org/10.1063/1.4912976

  20. Rostami Varnousfaaderani M, Ketabdari MJ (2015) Numerical simulation of solitary wave breaking and impact on seawall using a modified turbulence SPH method with Riemann solvers. J Mar Sci Technol 20(2):344–356. https://doi.org/10.1007/s00773-014-0287-9

    Article  Google Scholar 

  21. Akbari H (2017) Simulation of wave overtopping using an improved SPH method. Coast Eng 126:51–68. https://doi.org/10.1016/j.coastaleng.2017.04.010

    Article  Google Scholar 

  22. Paprota M, Staroszczyk R, Sulisz W (2017) Eulerian and Lagrangian modelling of a solitary wave attack on a seawall. J Hydro-Environ Res. https://doi.org/10.1016/j.jher.2017.09.001

    Article  Google Scholar 

  23. Liang D, Jian W, Shao S, Chen R, Yang K (2017) Incompressible SPH simulation of solitary wave interaction with movable seawalls. J Fluids Struct 69:72–88. https://doi.org/10.1016/j.jfluidstructs.2016.11.015

    Article  Google Scholar 

  24. Aristodemo F, Tripepi G, Meringolo DD, Veltri P (2017) Solitary wave-induced forces on horizontal circular cylinders: laboratory experiments and SPH simulations. Coast Eng 129:17–35. https://doi.org/10.1016/j.coastaleng.2017.08.011

    Article  Google Scholar 

  25. Lo EYM, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24:275–286

    Article  Google Scholar 

  26. Nam HK, Haeng SK (2008) Numerical simulation on solitary wave propagation and run-up by SPH method. KSCE J Civil Eng 12(4):221–226. https://doi.org/10.1007/s12205-008-0221-y

    Article  Google Scholar 

  27. Memarzadeh R, Hejazi K (2012) ISPH numerical modeling of nonlinear wave run-up on steep slopes. J Persian Gulf 3(10):17–26

    Google Scholar 

  28. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and allocation to non-spherical stars. R Astron Soc Mon Not 181:375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  29. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  30. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  31. Rogers BD, Dalrymple RA (2004) SPH modeling of breaking waves. In: Proceedings of the 14th International Conference in Coastal Engineering, World Scientific Press, pp 415–427

  32. Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82:1–15. https://doi.org/10.1016/0021-9991(89)90032-6

    Article  MATH  Google Scholar 

  33. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–154. https://doi.org/10.1061/(ASCE)0733-950X

    Article  Google Scholar 

  34. Gómez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Domínguez JM (2012) SPHysics-development of a free-surface fluid solver-Part 1: theory and formulations. Comput Geosci 48:289–299. https://doi.org/10.1016/j.cageo.2012.02.029

    Article  Google Scholar 

  35. Gómez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA, Domínguez JM, Barreiro A (2012) SPHysics-development of a freesurface fluid solver-Part 2: efficiency and test cases. Comput Geosci 48:300–307. https://doi.org/10.1016/j.cageo.2012.02.028

    Article  Google Scholar 

  36. Katell G, Eric B (2002) Accuracy of solitary wave generation by a piston wave maker. J Hydraul Res 40(3):321–331. https://doi.org/10.1080/00221680209499946

    Article  Google Scholar 

  37. Lo HY, Park YS, Liu PLF (2013) On the run-up and back-wash processes of single and double solitary waves–an experimental study. Coast Eng 80:1–14. https://doi.org/10.1016/j.coastaleng.2013.05.001

    Article  Google Scholar 

  38. Grue J, Pelinovsky EN, Fructus D, Talipova T, Kharif C (2008) Formation of undular bores and solitary waves in the Strait of Malacca caused by the 26 December 2004 Indian Ocean tsunami. J Geophys Res 113:C05008. https://doi.org/10.1029/2007JC004343

    Article  Google Scholar 

  39. Madsen PA, Fuhrman DR, Schaffer HA (2008) On the solitary wave paradigm for tsunamis. J Geophys Res 113:C12012. https://doi.org/10.1029/2008JC004932

    Article  Google Scholar 

  40. Dong J, Wang BL, Liu H (2015) Run-up of non-breaking double solitary waves with equal wave heights on a plane beach. J Hydrodyn 26(6):939–950. https://doi.org/10.1016/S1001-6058(14)60103-7

    Article  Google Scholar 

  41. Ketabdari MJ, Sepyani H (2010) Wave generation with flap type wave maker by SPH method. In: 12th Marine Industry Conferences, Zibakenar, Iran

  42. Meringolo DD, Aristodemo F, Veltri P (2015) SPH numerical modeling of wave–perforated breakwater interaction. Coast Eng 101:48–68. https://doi.org/10.1016/j.coastaleng.2015.04.004

    Article  Google Scholar 

  43. Galvin CJ, Eagleson PS (1964) Experimental study of longshore currents on a plane beach. Massachusetts Institute of Technology, Hydrodynamics Laboratory, Cambridge

    Google Scholar 

  44. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineering and scientists. World Scientific Press, Singapore

  45. Goda Y, Suzuki Y (1976) Estimation of incident and reflected wave in regular wave experiment. In: Proceedings of 15th Coastal Engineering Conference, pp 828–845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Ketabdari.

Additional information

Technical Editor: Celso Kazuyuki Morooka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, A., Ketabdari, M.J. Modeling of emerged semi-circular breakwater performance against solitary waves using SPH method. J Braz. Soc. Mech. Sci. Eng. 40, 290 (2018). https://doi.org/10.1007/s40430-018-1179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1179-4

Keywords

Navigation