A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping

  • Thomas Miras
  • José J. Camata
  • Renato N. Elias
  • José L. D. Alves
  • Fernando A. Rochinha
  • Alvaro L. G. A. Coutinho
Technical Paper


The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.


Fluid–object interaction ALE Staggered time integration Vortex-induced vibrations Residual-based variational multiscale method 



This work is partially supported by CAPES, CNPq and FAPERJ. EdgeCFD has been developed in the High Performance Computing Center of COPPE/Federal University of Rio de Janeiro for Petrobras S.A.


  1. 1.
    Ahmed N, Rebollo TC, John V, Rubino S (2017) A review of variational multiscale methods for the simulation of turbulent incompressible flows. Arch Comput Methods Eng 24(1):115–164MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79(1):010905. CrossRefGoogle Scholar
  3. 3.
    Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical fsi study of compliant hydrofoils. Comput Mech 55:1079–1090CrossRefGoogle Scholar
  5. 5.
    Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Model Method Appl Sci 22(Suppl 2):1230002. CrossRefzbMATHGoogle Scholar
  6. 6.
    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) Fluid–structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010. CrossRefGoogle Scholar
  7. 7.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction methods and applications. Wiley, AmsterdamCrossRefzbMATHGoogle Scholar
  8. 8.
    Bungartz HJ, Schäfer M (2006) Fluid–structure interaction: modelling, simulation, optimisation, vol 1. Springer, New YorkzbMATHGoogle Scholar
  9. 9.
    Farhat C, Rallu A, Wang K, Belytschko T (2010) Robust and provably second-order explicit-explicit and implicit–explicit staggered time-integrators for highly non-linear compressible fluid–structure interaction problems. Int J Numer Methods Eng 84(1):73–107MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Calderer A, Guo X, Shen L, Sotiropoulos F (2014) Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach. J Phys Conf Ser 524(1):012091CrossRefGoogle Scholar
  11. 11.
    Calderer A, Kang S, Sotiropoulos F (2014) Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. J Comput Phys 277:201–227MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Calderer R, Masud A (2010) A multiscale stabilized ale formulation for incompressible flows with moving boundaries. Comput Mech 46(1):185–197MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438CrossRefzbMATHGoogle Scholar
  14. 14.
    Carrica PM, Wilson RV, Noack RW, Stern F (2007) Ship motions using single-phase level set with dynamic overset grids. Comput Fluids 36(9):1415–1433CrossRefzbMATHGoogle Scholar
  15. 15.
    Carvalho D, Sampaio CMP, Ruggeri F, de Mello PC, Watai RA (2012) Green water events in fpso. Tech rep, USP-PetrobrasGoogle Scholar
  16. 16.
    Cellier FE, Kofman E (2006) Continuous system simulation. Springer, New YorkzbMATHGoogle Scholar
  17. 17.
    Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Codina R, Principe J, Avila M (2010) Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int J Numer Meth Heat Fluid Flow 20:492–516MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196:2413–2430MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Coutinho A, Alves J, Rochinha F, Elias R, de Almeida Côrtes A, Gonçalves-Junior M, da Silva C, Gazoni L, Ferreira B, Bernadá G, Lins E, de Carvalho e Silva D (2013) Simulador de elementos finitos para problemas complexos de superfcie livre: Extensoes e novas analises de engenharia. Tech. rep., Project PEC 14329 - Nucleo Avancado de Computacao de Alto Desempenho COPPE/UFRJGoogle Scholar
  22. 22.
    Cruchaga M, Battaglia L, Storti M, D’Elía J (2016) Numerical modeling and experimental validation of free surface flow problems. Arch Comput Methods Eng 23(1):139–169MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dettmer W, Perić D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:1633–1666MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dettmer WG, Perić D (2013) A new staggered scheme for fluid–structure interaction. Int J Numer Meth Eng 93(1):1–22MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, AmsterdamCrossRefGoogle Scholar
  26. 26.
    Elgeti S, Sauerland H (2016) Deforming fluid domains within the finite element method: five mesh-based tracking methods in comparison. Arch Comput Methods Eng 23(2):323–361MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Elias R, Coutinho A (2007) Stabilized edge-based finite element simulation of free-surface flows. Int J Numer Meth Fluids 54:965–993MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Elias R, Coutinho A, Jr, MG, Cortês A, Alves JLD, Guevara NO, Silva JCE, Correa B, Rochinha FA, Bernadá GMG, de Carvalho e Silva DF (2013) A stabilized edge-based finite element approach to wave–structure interaction assessment. In: ASME 2013 32nd international conference on ocean, offshore and arctic engineering, vol 1, Offshore Technology, NantesGoogle Scholar
  29. 29.
    Elias R, Gonçalves M, Coutinho A, Esperança P, Martins M, Ferreira M (2009) Free-surface flow simulation using stabilized edge-based finite element methods. In: Proceeedings of ASME 2009 28th international conference on offshore mechanics and arctic engineering OMAE, ASMEGoogle Scholar
  30. 30.
    Elias R, Paraizo P, Coutinho A (2008) Stabilized edge-based finite element computation of gravity currents in lock-exchange configurations. Int J Numer Meth Fluids 57:1137–1152MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Formaggia L, Miglio E, Mola A, Parolini N (2008) Fluid–structure interaction problems in free surface flows: application to boat dynamics. Int J Numer Meth Fluids 56:965–978MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Franklin G, Powell J, Emami-Naeini A (1994) Feedback control of dynamic systems. Addison-Wesley Publishing, BostonzbMATHGoogle Scholar
  33. 33.
    Géradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue européenne des éléments finis 4:497–553MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gravemeier V, Wall W (2011) Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low mach number. Int J Numer Meth Fluids 65:1260–1278MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gustafsson K, Lundh M, Soderlind G (1988) A pi stepsize control for the numerical solution for ordinary differential equations. BIT 28:270–287MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hesch C, Gil A, Carreño AA, Bonnet J, Betsch J (2014) A mortar approach for fluid-structure interaction problems: immersed strategies for deformable and rigid bodies. Comput Methods Appl Mech Eng 278:853–882MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hirt CW, Nichols BD (1981) Volume of fluid (vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225CrossRefzbMATHGoogle Scholar
  38. 38.
    Hsu MC, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hughes T, Feijoo G, Mazzei L, Quincy JB (1998) The variational mulsticale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24CrossRefzbMATHGoogle Scholar
  40. 40.
    Jacobsen NG, Fuhrman DR, Fredsœ J (2012) A wave generation toolbox for the open-source cfd library: openfoam®. Int J Numer Meth Fluids 70(9):1073–1088Google Scholar
  41. 41.
    Journée JMJ, Massie WW (2001) Offshore hydromechanics first edition. Delft University of Technology. Accessed 6 Apr 2018
  42. 42.
    Kadapa C, Dettmer W, Perić D (2017) A stabilised immersed boundary method on hierarchical b-spline grids for fluid-rigid body interaction with solid-solid contact. Comput Methods Appl Mech Eng 318:242–269MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kanchi H, Masud A (2007) A 3d adaptive mesh moving scheme. Int J Numer Meth Fluids 54(6–8):923–944MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Keyes DE, Mcinnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J, Constantinescu E, Estep D, Evans K, Farhat C, Hakim A, Hammond G, Hansen G, Hill J, Isaac T, Jiao X, Jordan K, Kaushik D, Kaxiras E, Koniges A, Lee K, Lott A, Lu Q, Magerlein J, Maxwell R, Mccourt M, Mehl M, Pawlowski R, Randles AP, Reynolds D, Rivière B, Rüde U, Scheibe T, Shadid J, Sheehan B, Shephard M, Siegel A, Smith B, Tang X, Wilson C, Wohlmuth B (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83CrossRefGoogle Scholar
  45. 45.
    Li L, Sherwin S, Bearman P (2002) A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies. Int J Numer Meth Fluids 38:187–206. CrossRefzbMATHGoogle Scholar
  46. 46.
    Lins E, Elias R, Rochinha F, Coutinho A (2010) Residual-based variational multiscale simulation of free surface flows. Comput Mech 46:545–557MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Lins EF, Elias RN, Rochinha FA, Coutinho AL (2010) Residual-based variational multiscale simulation of free surface flows. Comput Mech 46:545–557MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Löhner R (2008) Applied computational fluid dynamics techniques: an introduction based on finite element methods. Wiley, AmsterdamCrossRefzbMATHGoogle Scholar
  49. 49.
    Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comput Fluids 36(1):77–91MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Masud A, Hughes TJR (1997) A space-time galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146(1):91–126MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85:67–94Google Scholar
  52. 52.
    Principe J, Codina R, Henke F (2010) The dissipative structure of variational multiscale methods for incompressible flows. Comput Methods Appl Mech Eng 199:791–801MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Golshan R, Tejada-Martnez AE, Juha M, Bazilevs Y (2015) Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions. Comput Fluids 118:172–181. MathSciNetCrossRefGoogle Scholar
  54. 54.
    Löhner R, Yang C, Oñate E (2007) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int J Numer Meth Fluids 53(8):1315–1338MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Rasthofer U, Gravemeier V (2017) Recent developments in variational multiscale methods for large-eddy simulation of turbulent flow. Arch Comput Methods Eng. zbMATHGoogle Scholar
  56. 56.
    Robertson I, Li L, Sherwin S, Bearman P (2003) A numerical study of rotational and transverse galloping rectangular bodies. J Fluids Struct 17:681–699CrossRefGoogle Scholar
  57. 57.
    Rochinha FA, Sampaio R (2000) Non-linear rigid body dynamics: energy and momentum conserving algorithm. CMES 1:7–18MathSciNetGoogle Scholar
  58. 58.
    Ruggeri F, Watai RA, de Mello PC, Sampaio CMP, Simos AN, de Carvalho e Silva DF (2015) Fundamental green water study for head, beam and quartering seas for a simplified FPSO geosim using a mixed experimental and numerical approach. Mar Syst Ocean Technol 10(2):71–90CrossRefGoogle Scholar
  59. 59.
    Säfström N (2009) Modeling and simulation of rigid body and rod dynamics via geometric methods. Ph.D. thesis, NTNUGoogle Scholar
  60. 60.
    de Sampaio PAB, Hallak PH, Coutinho ALGA, Pfeil MS (2004) A stabilized finite element procedure for turbulent fluidstructure interaction using adaptive timespace refinement. Int J Numer Meth Fluids 44(6):673–693CrossRefzbMATHGoogle Scholar
  61. 61.
    Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, CambridgezbMATHGoogle Scholar
  62. 62.
    Simo J, Vu-Quoc L (1986) A three-dimensional finite-stain rod model, part 2: computational aspects. Comput Methods Appl Mech Eng 58:79–116CrossRefzbMATHGoogle Scholar
  63. 63.
    Simo J, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Simo J, Wong KK (1991) Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int J Numer Methods Eng 31:19–52MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Souli M, Benson DJ (2013) Arbitrary Lagrangian-Eulerian and fluid-structure interaction: numerical simulation. Wiley, AmsterdamCrossRefGoogle Scholar
  66. 66.
    Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (edict) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155(3):235–248CrossRefzbMATHGoogle Scholar
  67. 67.
    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng 21(4):481–508. MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Tanaka S, Kashiyama K (2006) Ale finite element method for fsi problems with free surface using mesh re-generation method based on background mesh. Int J Comput Fluid Dyn 20(3–4):229–236CrossRefzbMATHGoogle Scholar
  69. 69.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Tezduyar TE, Mital S, Ray SE, Shi R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242CrossRefzbMATHGoogle Scholar
  71. 71.
    Tezduyar TE, Takizawa K, Bazilevs Y (2017) Fluid–structure interaction and flows with moving boundaries and interfaces. Encycl Comput Mech Second Ed Part 2 Fluids. Google Scholar
  72. 72.
    Valli A, Carey G, Coutinho A (2002) Control strategies for timestep selection in simulation of coupled viscous flow and heat transfer. Commun Numer Methods Eng 18:131–139CrossRefzbMATHGoogle Scholar
  73. 73.
    Valli A, Carey G, Coutinho A (2005) Control strategies for timestep selection in fe simulation of incompressible flows and coupled reaction convection diffusion processes. Int J Numer Method Fluids 47:201–231CrossRefzbMATHGoogle Scholar
  74. 74.
    Valli A, Elias R, Carey G, Coutinho A (2009) Pid adaptive control of incremental and arclength continuation in nonlinear applications. Int J Numer Methods Fluids 61:1181–1200MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput Fluids 36(1):169–183CrossRefzbMATHGoogle Scholar
  76. 76.
    Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetCrossRefGoogle Scholar
  77. 77.
    Yang J, Stern F (2012) A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions. J Comput Phys 231:5029–5061MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Yang L (2018) One-fluid formulation for fluid structure interaction with free surface. Comput Methods Appl Mech Eng 332:102–135MathSciNetCrossRefGoogle Scholar
  79. 79.
    Yang L, Badia S, Codina R (2016) A pseudo-compressible variational multiscale solver for turbulent incompressible flows. Comput Mech 58:1051–1069MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Yang L, Gil A, Carreno A, Bonet J (2018) Unified one-fluid formulation for incompressible flexible solids and multiphase flows: application to hydrodynamics using the immersed structural potential method (ispm). Int J Numer Meth Fluids 86:78–106MathSciNetCrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.High Performance Computing CenterUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Civil Engineering DepartmentCOPPE/Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations