Advertisement

Numerical investigation on dust-loaded fibrous filters

  • Marzie Babaie Rabiee
  • Shahram Talebi
  • Omid Abouali
Technical Paper
  • 69 Downloads

Abstract

To investigate the pressure drop and capture efficiency of fibrous filters, the fluid flow through dust-loaded filter is simulated using the lattice Boltzmann method. The filter is modeled by two-dimensional fibers with the same or different diameter sizes which are arranged randomly. The Lagrangian approach is used to track the particles, which are large enough to ignore Brownian diffusion. The evolution of filter’s geometry due to the formation of the deposition dendrites is also considered. Effects of the structural parameters of the filter such as solid volume fraction and distribution of fiber’s diameter size, operating parameters like the Reynolds number of the flow and particle’s features such as Stokes number and interception coefficient on the pressure drop and capture efficiency are investigated. The simulations show that the rear fibers play a more important role in capturing smaller particles, in comparison with the larger ones in this work, especially at the initial filtration stages. The Stokes number and interception coefficient are the effective parameters for the dust-loaded filter performance while the Reynolds number (at low values) cannot exclusively change the filtering condition.

Keywords

Dust-loaded fibrous filters Lattice Boltzmann method Lagrangian approach Random arrangement Log-normal distribution 

References

  1. 1.
    Augusto LLX, Ross-Jones J, Lopes GC, Tronville P, Gonçalves JAS, Rädle M, Krause MJ (2018) Microfiber filter performance prediction using a lattice Boltzmann method. Commun Comput Phys 23:910–931CrossRefGoogle Scholar
  2. 2.
    Babaie Rabiee M, Talebi S, Abouali O, Izadpanah E (2015) Investigation of the characteristics of particulate flows through fibrous filters using the lattice Boltzmann method. Particuology 21:90–98CrossRefGoogle Scholar
  3. 3.
    Bhutra S, Payatakes A (1979) Experimental investigation of dendritic deposition of aerosol particles. J Aerosol Sci 10:445–464CrossRefGoogle Scholar
  4. 4.
    Cai R-R, Zhang L-Z (2016) Modeling of dynamic deposition and filtration processes of airborne particles by a single fiber with a coupled lattice Boltzmann and discrete element method. Build Environ 106:274–285CrossRefGoogle Scholar
  5. 5.
    Cai R-R, Zhang L-Z, Yan Y (2017) Performance prediction of PM 2.5 removal of real fibrous filters with a novel model considering rebound effect. Appl Therm Eng 111:1536–1547CrossRefGoogle Scholar
  6. 6.
    Chen S, Cheung C, Chan C, Zhu C (2002) Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibres. Comput Mech 28:152–161CrossRefzbMATHGoogle Scholar
  7. 7.
    Chen S, Doolen GD (2003) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fan J, Lominé F, Hellou M (2017) Numerical study of particle capture efficiency in fibrous filter. Eur Phys J Conf 140:03003CrossRefGoogle Scholar
  9. 9.
    Fan J, Lominé F, Hellou M (2018) Modelling particle capture efficiency with lattice Boltzmann method. Commun Comput Phys. 23:932–950Google Scholar
  10. 10.
    Filippova O, Hänel D (1997) Lattice-Boltzmann simulation of gas-particle flow in filters. Comput Fluids 26:697–712CrossRefzbMATHGoogle Scholar
  11. 11.
    Fotovati S, Vahedi Tafreshi H, Pourdeyhimi B (2010) Influence of fiber orientation distribution on performance of aerosol filtration media. Chem Eng Sci 65:5285–5293.  https://doi.org/10.1016/j.ces.2010.06.032 CrossRefGoogle Scholar
  12. 12.
    Friedlander SK (1977) Smoke, dust and haze: fundamentals of aerosol behavior. Wiley-Interscience, New YorkGoogle Scholar
  13. 13.
    Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  14. 14.
    Hosseini S, Tafreshi HV (2010) Modeling particle filtration in disordered 2-D domains: a comparison with cell models. Sep Purif Technol 74:160–169CrossRefGoogle Scholar
  15. 15.
    Hosseini SA, Tafreshi HV (2012) Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Comput Fluids 66:157–166.  https://doi.org/10.1016/j.compfluid.2012.06.017 CrossRefzbMATHGoogle Scholar
  16. 16.
    Hosseini SA, Vahedi Tafreshi H (2010) Modeling permeability of 3-D nanofiber media in slip flow regime. Chem Eng Sci 65:2249–2254.  https://doi.org/10.1016/j.ces.2009.12.002 CrossRefGoogle Scholar
  17. 17.
    Jackiewicz A, Podgórski A, Gradoń L, Michalski J (2013) Nanostructured media to improve the performance of fibrous filters. KONA Powder Part J 30:244–255CrossRefGoogle Scholar
  18. 18.
    Karadimos A, Ocone R (2003) The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder Technol 137:109–119.  https://doi.org/10.1016/s0032-5910(03)00132-3 CrossRefGoogle Scholar
  19. 19.
    Kasper G, Schollmeier S, Meyer J (2010) Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J Aerosol Sci 41:1167–1182.  https://doi.org/10.1016/j.jaerosci.2010.08.006 CrossRefGoogle Scholar
  20. 20.
    Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lantermann U, Hänel D (2007) Particle Monte Carlo and lattice-Boltzmann methods for simulations of gas–particle flows. Comput Fluids 36:407–422CrossRefzbMATHGoogle Scholar
  22. 22.
    Li X, Qin H, You Z, Yao W (2018) Prediction of the particles collection and pressure-drop characteristics across fibrous media. Sci Technol Built Environ.  https://doi.org/10.1080/23744731.2018.1441546 Google Scholar
  23. 23.
    Li X, Qin H, You Z, Yao W, Liu H (2018) Study on the pressure drop characteristics for the particles across fibres. In: IOP conference series: earth and environmental science, vol 1. IOP Publishing, p 012164Google Scholar
  24. 24.
    Lin KC, Tao H, Lee K-W (2014) An early stage of aerosol particle transport in flows past periodic arrays of clear staggered obstructions: a computational study. Aerosol Sci Technol.  https://doi.org/10.1080/02786826.2014.982783 Google Scholar
  25. 25.
    Liu ZG, Wang PK (1997) Pressure drop and interception efficiency of multifiber filters. Aerosol Sci Technol 26:313–325CrossRefGoogle Scholar
  26. 26.
    Marshall JS, Li S (2014) Adhesive particle flow. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. 27.
    Mei R, Luo L-S, Shyy W (1999) An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys 155:307–330CrossRefzbMATHGoogle Scholar
  28. 28.
    Nabovati A, Sousa A (2007) Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method. J Eng Sci Technol 2:226–237Google Scholar
  29. 29.
    Przekop R, Gradoń L (2014) Effect of particle and fiber size on the morphology of deposits in fibrous filters. Int J Numer Methods Fluids 76:779–788CrossRefGoogle Scholar
  30. 30.
    Przekop R, Moskal A, Gradon L (2003) Lattice-Boltzmann approach for description of the structure of deposited particulate matter in fibrous filters. Aerosol Sci 34:133–147CrossRefGoogle Scholar
  31. 31.
    Qian F, Huang N, Lu J, Han Y (2014) CFD–DEM simulation of the filtration performance for fibrous media based on the mimic structure. Comput Chem Eng 71:477–488CrossRefGoogle Scholar
  32. 32.
    Rao N, Faghri M (1988) Computer modeling of aerosol filtration by fibrous filters. Aerosol Sci Technol 8:133–156CrossRefGoogle Scholar
  33. 33.
    Saleh AM, Hosseini SA, Vahedi Tafreshi H, Pourdeyhimi B (2013) 3-D microscale simulation of dust-loading in thin flat-sheet filters: a comparison with 1-D macroscale simulations. Chem Eng Sci 99:284–291.  https://doi.org/10.1016/j.ces.2013.06.007 CrossRefGoogle Scholar
  34. 34.
    Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Presss, OxfordzbMATHGoogle Scholar
  35. 35.
    Tehrani SMB, Moosavi A, Sadrhosseini H (2016) Filtration of aerosol particles by cylindrical fibers within a parallel and staggered array. Microsyst Technol 22:965–977CrossRefGoogle Scholar
  36. 36.
    Wang H, Zhao H, Guo Z, Zheng C (2012) Numerical simulation of particle capture process of fibrous filters using lattice Boltzmann two-phase flow model. Powder Technol 227:111–122CrossRefGoogle Scholar
  37. 37.
    Wang H, Zhao H, Wang K, He Y, Zheng C (2013) Simulation of filtration process for multi-fiber filter using the lattice-Boltzmann two-phase flow model. J Aerosol Sci 66:164–178.  https://doi.org/10.1016/j.jaerosci.2013.08.016 CrossRefGoogle Scholar
  38. 38.
    Wang J, Pui DY (2009) Filtration of aerosol particles by elliptical fibers: a numerical study. J Nanopart Res 11:185–196CrossRefGoogle Scholar
  39. 39.
    Wang Q, Maze B, Tafreshi HV, Pourdeyhimi B (2006) A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media. Chem Eng Sci 61:4871–4883.  https://doi.org/10.1016/j.ces.2006.03.039 CrossRefGoogle Scholar
  40. 40.
    Xu B, Wu Y, Cui P (2014) Semi-analytical and computational investigation of different dust loading structures affecting the performance of a fibrous air filter. Particuology 13:60–65CrossRefGoogle Scholar
  41. 41.
    Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9:1591–1598MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Marzie Babaie Rabiee
    • 1
    • 2
  • Shahram Talebi
    • 1
  • Omid Abouali
    • 3
  1. 1.Department of Mechanical EngineeringYazd UniversityYazdIran
  2. 2.Department of Mechanical EngineeringPersian Gulf UniversityBushehrIran
  3. 3.Department of Mechanical EngineeringShiraz UniversityShirazIran

Personalised recommendations