Development, validation and application of a newly developed rig facility for investigation of jet aeroacoustics

  • Leopoldo Pacheco Bastos
  • Cesar J. Deschamps
  • Andrey R. da Silva
  • Julio A. Cordioli
  • José R. L. N. Sirotto
  • Igor A. Maia
  • Eduardo L. C. Coelho
  • Rudner L. Queiroz
Technical Paper


Over the last decades, significant improvements have been achieved in terms of noise reduction for jet engine aircraft. Nevertheless, jet noise remains one of the major sound sources from commercial aircraft, particularly during take-off. To develop strategies for jet noise reduction, it becomes paramount to understand the mechanisms of sound production and radiation from the experimental point of view. For this reason, researchers need high-quality noise data, obtained under proper conditions for both the acoustic and flow fields of scaled jets. This paper reports the development, validation and application of a new jet rig facility built at Federal University of Santa Catarina for investigations of jet noise. Issues relating to limited budget, deadline fulfillment and inner space restrictions, made the design and construction of the facility particularly difficult. Such drawbacks were overcome by designing carefully every system making up the whole facility, some of them based on CFD analyses, as well as by employing tailored solutions to some systems. Throughout the paper, the infrastructure of facility and its main systems are presented as well as major design requirements are discussed. Subsequently, the free-field qualification and the determination of acoustic far-field for the jet source, concerning the anechoic chamber, are described. With the aim of evaluating the acoustic performance of the facility, noise data were acquired for jet flows with Mach numbers from 0.3 to 0.9 and observer locations from 60 to 150 degrees. Additionally, hot-wire anemometry measurements were performed at different axial positions along the jet to illustrate the turbulent character of flows generated. Results of flow and noise measurements revealed an acoustically clean signature as well as turbulence properties in good agreement with data from other facilities. Finally, the paper outlines the underway research works at the mentioned facility and new directions for further work.


Rig facility Jet noise Scaled jets Anechoic chamber 



This study forms part of a joint technical–scientific program of the Federal University of Santa Catarina and EMBRAER. The authors would like to thank Mr. Igor A. Maia for the support to the flow measurements. The financial support from FINEP (Federal Agency of Research and Projects Financing), CNPq (Brazilian Research Council) and CAPES (Coordination for the Improvement of High-Level Personnel) is also acknowledged.


  1. 1.
    Casalino D, Diozzi F, Sannino R, Paonessa A (2008) Aircraft noise reduction technologies: a bibliographic review. Aerosp Sci Technol 12:1–17. CrossRefMATHGoogle Scholar
  2. 2.
    Powell CA, Fields JM (1995) Human response to aircraft noise. In: Hubbard HH (ed) Aeroacoustics of flight vehicles theory and practice, vol 2. Noise control. Aeroacoustic Society of America, Woodbury, pp 1–48Google Scholar
  3. 3.
    Finkle AL, Poppen JR (1948) Clinical effects of noise and mechanical vibrations of a turbojet engine on man. J Appl Physiol 1(3):183–204CrossRefGoogle Scholar
  4. 4.
    Barbot B, Lavandier C, Chemineé P (2008) Perceptual representation of aircraft sounds. Appl Acoust 69:1003–1016. CrossRefGoogle Scholar
  5. 5.
    Callender WB (2004) An investigation of innovative technologies for reduction of jet noise in medium and high bypass turbofan engines. PhD Dissertation, University of CincinnatiGoogle Scholar
  6. 6.
    Astley RJ (2014) Can technology deliver acceptable levels of aircraft noise? In: Proceedings of internoise 2014, Melbourne, AustraliaGoogle Scholar
  7. 7.
    Campos LMBC (2006) On some recent advances in aeroacoustics. Int J Acoust Vib 11:27–45. Google Scholar
  8. 8.
    Omais M et al (2008) Jet noise prediction using RANS CFD input. AIAA Paper 2008-2938Google Scholar
  9. 9.
    Karabasov SA et al (2008) Using large eddy simulation within an acoustic analogy approach for jet noise modelling. AIAA Paper 2008-2985Google Scholar
  10. 10.
    Ladeinde F et al. (2011) An integrated RANS-PSE-wave packet tool for the prediction of subsonic and supersonic jet noise. AIAA Paper 2011-2704Google Scholar
  11. 11.
    Massey SJ et al (2003) Computational and experimental flow field analyses of separate flow chevron nozzles and pylon interaction. AIAA Paper 2003-3212Google Scholar
  12. 12.
    Tanna HK, Dean PD, Burrin RH (1976) The generation and radiation of supersonic jet noise, part III, Turbulent mixing noise data. AFAPL-TR-76-65Google Scholar
  13. 13.
    Brown C, Bridges J (2006) Small hot jet acoustic rig validation. NASA/TM-214234Google Scholar
  14. 14.
    Colonius T, Lele SK (2004) Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog Aerosp Sci 40:345–416. CrossRefGoogle Scholar
  15. 15.
    Dowling AP, Hynes TP (2004) Sound generation by turbulence. Eur J Mech B Fluids 23:491–500. MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jansson D, Mathew J, Hubner JP, Sheplak M, Cattafesta L (2002) Design and validation of an aeroacoustic anechoic test facility. AIAA Paper 2002-2466Google Scholar
  17. 17.
    Tinney CE, Hall A, Glauser MN, Ukeiley LS, Coughlin T (2004) Designing an anechoic chamber for the experimental study of high speed heated jets. AIAA Paper 2004-0010Google Scholar
  18. 18.
    Ponton MK, Seiner JM, Ukeiley LS, Jansen BJ (2001) A new anechoic chamber design for testing high-temperature jet flows. AIAA Paper 2001-2190Google Scholar
  19. 19.
    Ahuja KK (2003) Designing clean jet noise facilities and making accurate jet noise measurements. AIAA Paper 2003-0706Google Scholar
  20. 20.
    Hahn CB (2011) Design and validation of the new jet facility and anechoic chamber. MSc Dissertation, Ohio State UniversityGoogle Scholar
  21. 21.
    Mathew J (2006) Design, fabrication, and characterization of an anechoic wind tunnel facility. PhD Dissertation, University of FloridaGoogle Scholar
  22. 22.
    Duell E, Walter J, Arnette S, Yen J (2002) Recent advances in large-scale aeroacoustic wind tunnels. AIAA Paper 2002-2503Google Scholar
  23. 23.
    Joslin RD et al (2005) Synergism of flow and noise control technologies. Prog Aerosp Sci 41:363–417. CrossRefGoogle Scholar
  24. 24.
    Martens S (2002) Jet noise reduction technology development at GE aircraft engines. In: 22nd Congress of international council of the aeronautical sciences, UKGoogle Scholar
  25. 25.
    Herkes WH, Olsen RF, Uellenberg S (2006) The quiet technology demonstrator program: flight validation of airplane noise-reduction concepts. AIAA Paper 2006-2720Google Scholar
  26. 26.
    Nesbitt E, Mengle VG, Callender B, Czech M, Thomas R (2006) Flight test results for uniquely tailored propulsion-airframe aeroacoustic chevrons: community noise. AIAA Paper 2006-2438Google Scholar
  27. 27.
    Bennett GJ et al (2015) Aeroacoustics research in Europe: the CEAS-ASC report on 2013 highlights. J Sound Vib 340:39–60. CrossRefGoogle Scholar
  28. 28.
    Detandt Y (2015) Aeroacoustics research in Europe: the CEAS-ASC report on 2014 highlights. J Sound Vib 357:107–127. CrossRefGoogle Scholar
  29. 29.
    Saiyed NH, Mikkelsen KL, Bridges JE (2000) Acoustics and thrust of separate-flow exhaust nozzles with mixing devices for high-bypass-ratio engines. NASA TM-209948, Ohio, United StatesGoogle Scholar
  30. 30.
    Bastos LP (2016) Development and employment of a jet test rig facility for the analysis of installation effects on jets from serrated nozzles. PhD Dissertation, in Portuguese, Federal University of Santa CatarinaGoogle Scholar
  31. 31.
    Tam CKW (2004) Computational aeroacoustics: an overview of computational challenges and applications. Int J Comput Fluid Dyn 18:547–567. MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Pinker RA (2004) The enhancement of the QinetiQ Noise Test Facility for larger-scale exhaust systems. AIAA Paper 2004-3019Google Scholar
  33. 33.
    Bridges J, Brown CA (2004) Parametric testing of chevrons on single flow hot jets. AIAA Paper 2004-2824Google Scholar
  34. 34.
    International Organization for Standardization (ISO) 3745 (2003) Acoustics—determination of sound power levels of noise sources using sound pressure—precision methods for anechoic and hemi-anechoic roomsGoogle Scholar
  35. 35.
    Zaman KBMQ (2011) Effect of nozzle exit conditions on subsonic jet noise. AIAA Paper 2011-2704Google Scholar
  36. 36.
    Viswanathan K (2003) Jet aeroacoustic testing: issues and implications. AIAA J 41:1674–1689CrossRefGoogle Scholar
  37. 37.
    Bridges J, Wernet MP (2010) Establishing consensus turbulence statistics for hot subsonic jets. In: Proceedings of the 16th AIAA/CEAS aeroacoustics conference, Sweden, 2010Google Scholar
  38. 38.
    Bridges J, Brown C, Bozak R (2014) Experiments on exhaust noise of tightly integrated propulsion systems. AIAA Paper 2014-2904Google Scholar
  39. 39.
    Sirotto JRLN et al (2016) Validation of cold jet noise rig at Laboratory of Acoustic and Vibration (LVA), Federal University of Santa Catarina (UFSC). In: Proceedings of the 22th international congress on acoustics, Buenos Aires, 2016Google Scholar
  40. 40.
    Khavaran A, Bridges J (2009) Development of jet noise power spectral laws using SHJAR data. AIAA Paper 2009-3378Google Scholar
  41. 41.
    Tam CKW, Viswanathan K, Ahuja KK, Panda J (2008) The sources of jet noise: experimental evidence. J Fluid Mech 615:253–292. CrossRefMATHGoogle Scholar
  42. 42.
    Callender B, Gutmark E, Dimicco R (2002) The design and validation of a coaxial nozzle acoustic test facility. AIAA Paper 2002-0369Google Scholar
  43. 43.
    Callender B, Gutmark EJ, Martens S (2010) Flow field characterization of coaxial conical and serrated (chevron) nozzles. Exp Fluids 48:637–649. CrossRefGoogle Scholar
  44. 44.
    Nikam SR, Sharma SD (2014) Aero-acoustic characteristics of compressible jets from chevron nozzle. AIAA Paper 2014-2623.
  45. 45.
    Gutmark EJ, Callender B, Martens S (2006) Aeroacoustics of turbulent jets: flow structure, noise sources, and control. Int J Jpn Soc Mech Eng Ser B Fluids Therm Eng 49:1078–1085. Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Leopoldo Pacheco Bastos
    • 1
  • Cesar J. Deschamps
    • 2
  • Andrey R. da Silva
    • 2
  • Julio A. Cordioli
    • 2
  • José R. L. N. Sirotto
    • 2
  • Igor A. Maia
    • 2
  • Eduardo L. C. Coelho
    • 3
  • Rudner L. Queiroz
    • 3
  1. 1.Federal University of Pará-CAMTUCTucuruíBrazil
  2. 2.Federal University of Santa CatarinaFlorianópolisBrazil
  3. 3.EMBRAERSão José dos CamposBrazil

Personalised recommendations