An experimental investigation of the superelastic fatigue of NiTi SMA wires

  • Allysson Daniel de Oliveira Ramos
  • Carlos José de Araújo
  • Henrique Martinni Ramos de Oliveira
  • Gabriel Almeida Macêdo
  • Antonio Gilson Barbosa de Lima
Technical Paper


Nickel–titanium shape memory alloys (NiTi SMA) working in superelastic regime have been applied in several fields, such as health (medicine and dentistry) and engineering, in a static or dynamic way. The aim of this paper is to study the behavior of these smart metals when subjected to dynamic mechanical stresses (fatigue). Cyclic stress-controlled tensile tests were performed to evaluate the functional and structural superelastic fatigue properties of NiTi SMA wires. The functional parameters were defined as energy dissipation, transformation stresses, residual strain, and superelastic strain, for peak stresses between 500 and 800 MPa, at frequencies of 1, 2, and 3 Hz. These frequencies were determined after a preliminary evaluation of self-heating of the NiTi wires. The number of cycles until failure (Nf) was plotted as a function of peak stresses (S) in an SNf fatigue curve, for each studied frequency. It was verified that both frequency and peak stress affected the functional behavior of the NiTi wires. However, the fatigue life was between 5.0 × 103 and 1.6 × 104 cycles, with a faster degradation in this range as higher is the applied peak stress, irrespective of the loading frequency.


NiTi SMA wires Superelasticity Functional fatigue Structural fatigue Stress-controlled tensile tests 



The authors thank the National Council for Scientific and Technological Development (CNPq) Brazilian office for sponsoring the following projects: National Institute of Science and Technology for Smart Structures in Engineering (INCT-EIE, Grant Number 574001/2008-5), Universal 01/2016 (Grant Number 401128/2016-4), CT-Aeroespacial 22/2013 (Grant Number 402082/2013-3), and PQ-1D (Grant Number 304658/2014-6).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, Boston, MA. zbMATHGoogle Scholar
  3. 3.
    Travassos GD, Rodrigues LFA, de Araújo CJ (2017) Fabrication and thermomechanical characterization of a new Cu–Al–Ni–Mn–Ti shape memory alloy bolt. J Braz Soc Mech Sci Eng 39:1269–1275CrossRefGoogle Scholar
  4. 4.
    Pereira FFR, Simões JB, De Araújo CJ (2011) Thermomechanical tests of shape memory alloy belleville washers. In: 21st International Congress of Mechanical Engineering, 2011, Natal RN., vol. 1, pp 1–10, 2011Google Scholar
  5. 5.
    Grassi END, De Oliveira HMR, De Araujo CJ, Castro WB (2015) Effect of Heat Treatments on the thermomechanical behaviour of Ni-Ti superelastic mini coil springs. MATEC Web of Conf 33:03004CrossRefGoogle Scholar
  6. 6.
    Savi MA, Paiva A, de Araujo CJ, de Paula AS (2016) Shape memory alloys. In: Junior Lopes V, Jr. Steffen V, Savi MA (eds) Dynamics of smart systems and structures, 1ed, vol 1. Springer International Publishing, Berlin, pp Basel–188Google Scholar
  7. 7.
    Torra V, Isalgue A, Carreras G, Lovey FC, Soul H, Terriault P (2010) “Experimental study of damping in civil engineering structures using smart materials (NiTi–SMA)”. Application to stayed cables for bridges. Int Rev Mech Eng 4:601–611Google Scholar
  8. 8.
    Tripi TR, Bonaccorso A, Condorelli GG (2006) Cyclic fatigue of different nickel-titanium endodontic rotary instruments. J Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 102(4):106–114CrossRefGoogle Scholar
  9. 9.
    Larsen CM, Watanabe I, Glickman GN, He J (2009) Cyclic fatigue analysis of a new generation of nickel titanium rotary instruments. J Endod 35(3):401–403CrossRefGoogle Scholar
  10. 10.
    Li YF, Mi XJ, Tan J, Gao BD (2009) Thermo-mechanical cyclic transformation behavior of Ti–Ni shape memory alloy wire. Mater Sci Eng A 509:8–13CrossRefGoogle Scholar
  11. 11.
    Branco M, Guerreiro L, Mahesh KK, Fernandes FMB (2012) Effect of load cycling on the phase transformations in Ni–Ti wires for civil engineering applications. Constr Build Mater 36:508–519CrossRefGoogle Scholar
  12. 12.
    Kang G, Kan Q, You C, Song D, Liu Y (2012) Whole-Life transformation ratchetting and fatigue of super-elastic Ni-Ti alloy under uniaxial stress-controlled cyclic loading. Mater Sci Eng A 535:228–234CrossRefGoogle Scholar
  13. 13.
    Qian H, Li H-N, Song G-B (2009) Cyclic behavior of superelastic shape memory alloy wire for innovative precast concrete frame connections. In: Proceedings of SPIE, vol. 7288, 2009Google Scholar
  14. 14.
    Des Roches R, Mccormick J (2003) Properties of large diameter shape memory alloys under cyclical loading. Proc SPIE 5:187–195CrossRefGoogle Scholar
  15. 15.
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2014) Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading. Int J Fatigue 66:78–85CrossRefGoogle Scholar
  16. 16.
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2012) Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach. Smart Mater Struct 21:7CrossRefGoogle Scholar
  17. 17.
    Kan Q, Yu C, Kang G, Li J, Yan W (2016) Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech Mater 97:48–58CrossRefGoogle Scholar
  18. 18.
    Torra V, Isalgue A, Lovey FC, Sade M (2015) Shape memory alloys as an effective tool to damp oscillations. Study of the fundamental parameters required to guarantee technological applications. J Therm Anal Calorim 119:1475–1533CrossRefGoogle Scholar
  19. 19.
    Zhang X, Wang S, Yan X, Yue D, Sun R, Zhou X (2016) Probabilistic analysis for the functional and structural fatigue of NiTi wires. Mater Des 102:213–224CrossRefGoogle Scholar
  20. 20.
    Yin H, He Y, Sun Q (2014) Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J Mech Phys Solids 67:100–128CrossRefGoogle Scholar
  21. 21.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378:24–33CrossRefGoogle Scholar
  22. 22.
    Melton KN, Mercier O (1979) Fatigue of NiTi thermoelastic martensites. Acta Metall 27:137–144CrossRefGoogle Scholar
  23. 23.
    Moumni Z, Van Herpen A, Riberty P (2005) Fatigue analysis of shape memory alloys: energy approach. Smart Mater Struct 14:S287–S292CrossRefGoogle Scholar
  24. 24.
    Moumni Z, Zaki W, Maitournam H (2009) Cyclic behavior and energy approach to the fatigue of shape memory alloys. J Mech Mater Struct 4(2):395–411CrossRefGoogle Scholar
  25. 25.
    Gao Y, Casalena L, Bowers M, Noebe R, Mills MJ, Wang Y (2017) An origin of functional fatigue of shape memory alloys. Acta Mater. (Accepted Manuscript) Google Scholar
  26. 26.
    ASTM F2516-14, Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials, ASTM International, West Conshohocken, PA, 2014,
  27. 27.
    de Araújo CJ, Morin M, Guénin G (1997) Fatigue behavior of Ti-Ni-Cu thin wires SME. Journal de Physique IV 7:C5-501–C5-506CrossRefGoogle Scholar
  28. 28.
    Alarcon E, Heller L, Chirani SA, Sittner P, Saint-Sulpice L and Calloch S (2015) Phase transformations and fatigue of NiTi. In: MATEC web of conferences, Vol. 33, 03011(6p), 2015Google Scholar
  29. 29.
    Siredey N, Hautcoeur A, Eberhardt A (2005) Lifetime of superelastic Cu–Al–Be single crystal wires under bending fatigue. Mater Sci Eng A 396:296–301CrossRefGoogle Scholar
  30. 30.
    Song D, Kang G, Kan Q, Yu C, Zhang C (2015) Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes. Smart Mater Struct 24:075004CrossRefGoogle Scholar
  31. 31.
    Morin C, Moumni Z, Zaki W (2011) Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int J Plast 27:1959–1980CrossRefzbMATHGoogle Scholar
  32. 32.
    De Araújo CJ, Morin M, Guénin G (2000) Estimation of internal stresses in shape memory wires during thermal cycling under constant load: a macromechanical approach. J Intell Mater Syst Struct USA 11(7):516–524CrossRefGoogle Scholar
  33. 33.
    Bagheri A, Mahtabi MJ, Shamsaei N (2017) Fatigue behavior and cyclic deformation of additive manufactured NiTi. J Mater Process Technol. (Accepted Manuscript) Google Scholar
  34. 34.
    Liu J-L, Huang H-Y, Xie J-X, Xu S, Li F (2017) Superelastic fatigue of columnar-grained Cu–Al–Mn shape memory alloy under cyclic tension at high strain. Scripta Mater 136:106–110CrossRefGoogle Scholar
  35. 35.
    Wagner M, Sawaguchi T, Kausträter G, Höffken D, Eggeler G (2004) Structural fatigue of pseudoelastic NiTi shape memory wires. Mater Sci Eng A 378:105–109CrossRefGoogle Scholar
  36. 36.
    Mammano GS, Dragoni E (2014) Functional fatigue of Ni–Ti shape memory wires under various loading conditions. Int J Fatigue 69:71–83CrossRefGoogle Scholar
  37. 37.
    de Araújo CJ, Morin M, Guénin G (2001) Martensitic transformation in Ti–Ni–Cu shape memory wires broken by thermal cycling under constant load. Journal de Physique IV 11:Pr8-375–Pr8-380CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Allysson Daniel de Oliveira Ramos
    • 1
  • Carlos José de Araújo
    • 1
  • Henrique Martinni Ramos de Oliveira
    • 1
  • Gabriel Almeida Macêdo
    • 1
  • Antonio Gilson Barbosa de Lima
    • 1
  1. 1.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations