Numerical simulation of 3D unsteady turbulent free surface flows using \(\kappa -\varepsilon\) model and ADBQUICKEST scheme

  • F. A. Kurokawa
  • L. Corrêa
  • R. A. B. de Queiroz
Technical Paper


This work deals with the development of a numerical technique to simulate 3D complex turbulent free surface flows. This technique is based on the finite-difference GENSMAC methodology coupled with high Reynolds \(\kappa -\varepsilon\) turbulence model and the ADBQUICKEST upwind scheme to deal with the advective terms. The computations are performed using the 3D version of the Freeflow simulation system, in which the effectiveness of the numerical technique is analyzed for the dam-break flow and a turbulent jet impinging orthogonally onto a flat surface. The numerical results are compared with existing analytical and experimental data. To demonstrate applicability of the Freeflow-3D simulation system for solving complex free surface flows at high Reynolds numbers, a case of the fluid–structure interaction was simulated.


Finite-difference method Reynolds average Navier–Stokes equations High-order upwind scheme Turbulent free surface flow Numerical simulation 



Support for this research was provided by the Brazilian agency FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) under Grants 05/51458-0, 06/05910-1, and 10/16865-2.


  1. 1.
    Alves MA, Oliveira PJ, Pinho FT (2003) A convergent and universally bounded interpolation scheme for the treatment of advection. Int J Numer Methods Fluid 41:47–75CrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson DA, Tannehill JC, Pletcher RH (1984) Computational fluid mechanics and heat transfer. Hemisphere Publishing Corporation, New YorkzbMATHGoogle Scholar
  3. 3.
    Ataie-Ashtiani B, Farhadi L (2006) A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res 38:241–256MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Batchelor GK (1967) An introduction of fluid dynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. 5.
    Bhajantri MR, Eldho TI, Deolalikar PB (2007) Numerical modelling of turbulent flow through spillway with gated operation. Int J Numer Methods Eng 72:221–243CrossRefzbMATHGoogle Scholar
  6. 6.
    Braun AL, Awruch AM (2003) Numerical simulation of the wind action on a long-span bridge deck. J Braz Soc Mech Sci Eng 25(4):352–363CrossRefGoogle Scholar
  7. 7.
    Castello AF, Tomé MF, César CNL, McKee S, Cuminato JA (2000) Freeflow: an integrated simulation system for three-dimensional free surface flows. Comput Vis Sci 2:199–210CrossRefzbMATHGoogle Scholar
  8. 8.
    Ozmen-Cagatay H, Kocaman S (2010) Dam-break flows during initial stage using SWE and RANS approaches. J Hydraul Res 48(5):603–611CrossRefGoogle Scholar
  9. 9.
    Ozmen-Cagatay H, Kocaman S (2011) Dam-break flow in the presence of obstacle: experiment and CFD simulation. Eng Appl Comput Fluid Mech 5(4):541–552Google Scholar
  10. 10.
    Choi DS, Lee SS, Im YT (2005) Fringe element reconstruction for front tracking for three-dimensional incompressible flow analysis. Int J Numer Methods Fluid 48:631–648CrossRefzbMATHGoogle Scholar
  11. 11.
    Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–761MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dalrymple RA, Knio O, Cox DT, Gesteira M, Zou S (2002) Using a Lagrangian particle method for deck overtopping. Proc Waves 2001. ASCE, Reston, VA, 1082–1091Google Scholar
  13. 13.
    Denaro FM (2003) On the applications of the Helmoltz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions. Int J Numer Methods Fluid 43:43–69MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ferreira VG, Brandi AC, Kurokawa FA, Seleghim P Jr, Castello AF, Cuminato JA (2007) Incompressible turbulent flow simulation using the \(\kappa - \varepsilon\) model and upwind schemes. Math Probl Eng 12741:1–26CrossRefzbMATHGoogle Scholar
  15. 15.
    Ferreira VG, Kurokawa FA, Oishi CM, Kaibara MK, Castello AF, Cuminato JA (2009) Evaluation of a bounded high order upwind scheme for 3D incompressible free surface flow computations. Math Comput Simul 23:419–445MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ferreira VG, Kurokawa FA, Queiroz RAB, Kaibara MK, Oishi CM, Cuminato JA, Castello AF, Tomé MF, McKee S (2009) Assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems. Int J Numer Methods Fluid 60:1–26MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ferziger JA, Perić M (1984) Computational methods for fluid dynamics. Springer, GermanyzbMATHGoogle Scholar
  18. 18.
    Fontaine E, Landrini M, Tulin M (2000) Breaking: splashing and ploughing phases. In: Proceedings of International Workshop on Waterwaves and Floating Bodies, pp 34–38Google Scholar
  19. 19.
    Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break problems. J Hydraul Res 33:843–864CrossRefGoogle Scholar
  20. 20.
    Gaskell PH, Lau AKC (1988) Curvature-compensated convective transport: SMART, a new boundedness preserving transport algorithm. Int J Numer Method Fluid 8:617–641MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gómez-Gesteira M, Dalrymple RA (2004) Using a three-dimensional smoothed particle hydrodynamics method for wave impact on at all structure. J Waterway Port Coast Ocean Eng 130:63–69CrossRefGoogle Scholar
  22. 22.
    Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49:357–393MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jones W, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314CrossRefGoogle Scholar
  25. 25.
    Kaibara MK, Ferreira VG, Navarro HA, Cuminato JA, Castelo AF, Tomé MF (2005) Upwinding schemes for convection dominated problems. In: Proceedings of the 18th International Congress of Mechanical Engineering, Ouro Preto, MG, BrazilGoogle Scholar
  26. 26.
    Kelecy FJ, Pletcher RH (1997) The development of a free surface capturing approach for multidimensional free surface flows in closed containers. J Comput Phys 138:939–980CrossRefzbMATHGoogle Scholar
  27. 27.
    Kim MS, Lee W (2003) A new VOF-based numerical scheme for the simulation of fluid with free surface. Part I. Int J Numer Methods Fluid 42:765–790CrossRefzbMATHGoogle Scholar
  28. 28.
    Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluids. Nucl Sci Eng 123:421–434CrossRefGoogle Scholar
  29. 29.
    Kurokawa FA, Ferreira VG, Oishi CM, Kaibara MK (2007) A comparison of high order upwind schemes for solving strong convection problems. Proceedings of Iberian Latin American Congress on Computational Methods in Engineering, PortoGoogle Scholar
  30. 30.
    Ladyzhenskaja OA (1963) The mathematical theory of viscous incompressible flow. Gordon and Breach, New YorkGoogle Scholar
  31. 31.
    Leonard BP (1980) The QUICK algorithm: a uniformly third-order finite-difference method for highly convective flows. Comput Methods Fluids 1:159–195Google Scholar
  32. 32.
    Leonard BP (1988) Simple high-accuracy resolution program for convective modeling of discontinuities. Int J Numer Method Fluid 8:1291–1318CrossRefzbMATHGoogle Scholar
  33. 33.
    Löhner R, Yang C, Onate E (2007) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int J Numer Methods Fluid 53:1315–1338MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Manouzi H, Fortin M (1991) A treatment of wall boundaries for turbulent flows by the use of a transmission finite element method. Int J Numer Methods Eng 31:113–126MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Martin JC, Moyce WJ (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plate. Phil Trans Math Phys Eng Sci 244:312–324CrossRefGoogle Scholar
  36. 36.
    Norris HL, Reynolds WC (1975) Turbulent channel flow with a moving wavy boundary, Stanford Univ. Dept Mech Eng. TR TF-7Google Scholar
  37. 37.
    Patel VC (1998) Perspective: flow at high Reynolds number and over rough surfaces-Achilles Heel of CFD. J Fluids Eng 120:434–444CrossRefGoogle Scholar
  38. 38.
    Quecedo M, Pastor M, Herreros MI, Merodo JAF, Zhang Q (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method. Comput Method Appl M 194(9):3984–4005MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Queiroz RAB, Kurokawa FA, Candezano MAC, Corrêa L (2017) Numerical investigations of turbulent free surface flows using TOPUS scheme. Comp Appl Math 36:1145–1160MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Robinson DI, Hassan HA (1998) Two-equation turbulence closure model for wall bounded and free shear flows. AIAA J 115:147–152zbMATHGoogle Scholar
  41. 41.
    Shigematsu T, Liu PLF, Oda K (2004) Numerical modelling of the initial stages of dam-break waves. J Hydraul Res 42(2):183–195CrossRefGoogle Scholar
  42. 42.
    Sondak DL, Pletcher RH (1995) Application of wall functions to generalized nonorthogonal curvilinear coordinate systems. AIAA J 33:33–41CrossRefzbMATHGoogle Scholar
  43. 43.
    Song B, Liu GR, Lam KY, Amano RS (2000) On a higher-order bounded discretization scheme. Int J Numer Methods Fluid 32:881–897MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Stansby PK, Chegini A, Barnes TCD (1998) The initial stages of dam-break flow. J Fluid Mech 374:407–424MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Tang Z, Wan D (2015) Numerical simulation of impinging jet flows by modified MPS method. Eng Comput 32:1153–1171CrossRefGoogle Scholar
  46. 46.
    Tomé MF, McKee S (1994) GENSMAC: a computational marker and cell method for free surface flows in general domains. J Comput Phys 110:171–186CrossRefzbMATHGoogle Scholar
  47. 47.
    Tomé MF, Castelo AF, Cuminato JA, Mangiavacchi N, McKee S (2001) GENSMAC3D: a numerical method for solving unsteady three-dimensional free surface flows. Int J Numer Methods Fluid 37:747–796CrossRefzbMATHGoogle Scholar
  48. 48.
    Varonos A, Bergeles G (1998) Development and assessment of a variable-order non-oscillatory scheme for convection term discretization. Int J Numer Methods Fluid 26:1–16MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Violeau D, Issa R (2007) Numerical modeling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluid 53:277–304CrossRefzbMATHGoogle Scholar
  50. 50.
    Watson EJ (1964) The radial spread of a liquid jet over a horizontal plane. J Fluid Mech 20:481–499MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Wilcox DC (1993) Turbulence modeling for CFD. DCW Industries, CaliforniaGoogle Scholar
  53. 53.
    Ying X, Jorgeson J, Wang SSY (2009) Modeling dam-break flows using finite volume method on unstructured grid. Eng Appl Comput Fluid Mech 3(2):184–194Google Scholar
  54. 54.
    Zhou JG, Causon DM, Mingham CG, Ingram DM (2004) Numerical prediction of dam-break flows in general geometries with complex bed topography. J Hydraul Res 130(4):332–40CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Departamento de Engenharia de Construção Civil, Escola PolitécnicaUniversidade de São PauloSão PauloBrazil
  2. 2.Faculdade de Ciências Exatas e TecnologiasUniversidade Federal da Grande DouradosDouradosBrazil
  3. 3.Departamento de Ciência da Computação, Instituto de Ciências ExatasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations