Advertisement

Optimal reorientation of a free-floating space robot subject to initial state uncertainties

  • Qijia Yao
  • Xinsheng Ge
Technical Paper

Abstract

This paper focuses on the dynamics and optimal reorientation of a free-floating space robot system in the presence of initial state uncertainties. A control strategy combining optimal motion planning and feedback control is presented based on the dynamic model of the system. In the design of the optimal motion planning, Legendre pseudospectral method (LPM) is used to transform the optimal reorientation problem into a nonlinear programming problem. Then, sequential quadratic programming algorithm is employed to solve the nonlinear programming problem and off-line generate the optimal reference trajectory of the system. In the design of feedback control, the state equation is linearized around the reference trajectory obtained by LPM. The tracking control problem is converted into a two-point boundary value problem based on Pontryagin’s maximum principle. Then LPM is used to discretize the two-point boundary value problem and transform it into a set of linear algebraic equations. This process does not require any integration calculations and has good performance in real time. Numerical simulations indicate that the control strategy is effective with good robustness.

Keywords

Motion planning Space robot Optimal control Feedback control Legendre pseudospectral method 

Notes

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 11732005 and 11472058).

References

  1. 1.
    Xu W, Liang B, Xu Y (2011) Survey of modeling, planning, and ground verfication of space robotic systems. Acta Astronaut 68(11–12):1629–1649CrossRefGoogle Scholar
  2. 2.
    Flores-Abad A, Ma O, Pham K, Ulrich S (2014) A review of space robotics technologies for on-orbit serving. Prog Aerosp Sci 68:1–26CrossRefGoogle Scholar
  3. 3.
    Papadopoulos E, Dubowsky S (1991) On the nature of control algorithms for free-floating space manipulators. IEEE Trans Robot Autom 7(6):750–758CrossRefGoogle Scholar
  4. 4.
    Nakamura Y, Mukherjee R (1991) Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans Robot Autom 7(4):500–514CrossRefGoogle Scholar
  5. 5.
    Coverstone-Carroll VL, Wilkey NM (1995) Optimal control of a satellite-robot system using direct collocation with non-linear programming. Acta Astronaut 36(3):149–162CrossRefGoogle Scholar
  6. 6.
    Yamada K, Yoshikawa S (1997) Feedback control of space robot attitude by cyclic arm motion. J Guid Control Dyn 20(4):715–720CrossRefzbMATHGoogle Scholar
  7. 7.
    Xu W, Liu Y, Liang B, Xu Y, Li C, Qiang W (2008) Non-holonomic path planning of a free-floating soace robotic system using genetic algorithms. Adv Robot 22(4):451–476CrossRefGoogle Scholar
  8. 8.
    Xu W, Li C, Liang B, Xu Y, Liu Y, Qiang W (2009) Target berthing and base reorientation of free-floating space robotic system after capturing. Acta Astronaut 64(2–3):109–126CrossRefGoogle Scholar
  9. 9.
    Sabatini M, Monti R, Gasbarri P, Palmerini GB (2013) Deployable space manipulator commanded by means of visual-based guidance and navigation. Acta Astronaut 83:27–43CrossRefGoogle Scholar
  10. 10.
    Sabatini M, Monti R, Gasbarri P, Palmerini GB (2013) Adaptive and robust algorithms and tests for visual-based navigation of a space robotic manipulator. Acta Astronaut 83:65–84CrossRefGoogle Scholar
  11. 11.
    Ulrich S, Sasiadek JZ, Barkana I (2012) Modeling and direct adaptive control of a flexible-joint manipulator. J Guid Control Dyn 35(1):25–39CrossRefGoogle Scholar
  12. 12.
    Ulrich S, Sasiadek JZ, Barkana I (2014) Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties. J Guid Control Dyn 37(6):1961–1975CrossRefGoogle Scholar
  13. 13.
    Yu X, Chen L (2015) Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators. Acta Astronaut 108:146–155CrossRefGoogle Scholar
  14. 14.
    Yu X, Chen L (2015) Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators. Proc Inst Mech Eng Part C J Mech Eng Sci 229(11):1989–1997CrossRefGoogle Scholar
  15. 15.
    Sun J, Tian Q, Hu H (2016) Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech Mach Theory 104:59–80CrossRefGoogle Scholar
  16. 16.
    Liu X, Li H, Chen Y, Cai G (2015) Dynamics and control of space robot considering joint friction. Acta Astronaut 111:1–18CrossRefGoogle Scholar
  17. 17.
    Liu X, Li H, Wang J, Cai G (2015) Dynamics analysis of flexible space robot with joint friction. Aerosp Sci Technol 47:164–176CrossRefGoogle Scholar
  18. 18.
    Alepuz JP, Emami MR, Pomares J (2016) Direct image-based visual servoing of free-floating space manipulators. Aerosp Sci Technol 55:1–9CrossRefGoogle Scholar
  19. 19.
    Zhang B, Liang B, Wang X, Li G, Chen Z, Zhu X (2016) Manipulability measure of dual-arm space robot and its application to design an optimal configuration. Acta Astronaut 128:322–329CrossRefGoogle Scholar
  20. 20.
    Rybus T, Seweryn K, Sasiadek JZ (2017) Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC). J Intell Robot Syst 85(3–4):491–509CrossRefGoogle Scholar
  21. 21.
    Tortopidis I, Papadopoulos E (2007) On point-to-point motion planning for underactuated space manipulator systems. Robot Auton Syst 55(2):122–131CrossRefGoogle Scholar
  22. 22.
    Boning P, Dubowsky S (2011) A kinematic approach to determining the optimal actuator sensor architecture for space robots. Int J Robot Res 30(9):1194–1204CrossRefGoogle Scholar
  23. 23.
    Sabatini M, Gasbarri P, Monti R, Palmerini GB (2012) Vibration control of a flexible space manipulator during on orbit operations. Acta Astronaut 73:109–121CrossRefGoogle Scholar
  24. 24.
    Liu X, Baoyin H, Ma X (2013) Optimal path planning of redundant free-floating revolute-jointed space manipulators with seven links. Multibody Syst Dyn 29(1):41–56MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jarzebowska E, Pietrak K (2014) Constrained mechanical systems modeling and control: a free-floating space manipulator case as a multi-constrained system. Robot Auton Syst 62(10):1353–1360CrossRefGoogle Scholar
  26. 26.
    Nanos K, Papadopoulos E (2015) Avoiding dynamic singularities in Cartesian motions of free-floating space manipulators. IEEE Trans Aerosp Electron Syst 51(3):2305–2318CrossRefGoogle Scholar
  27. 27.
    Fahroo F, Ross IM (2001) Costate estimation by a Legendre pseudospectral method. J Guid Control Dyn 24(2):270–277CrossRefGoogle Scholar
  28. 28.
    Gong Q, Kang W, Ross IM (2006) A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans Autom Control 51(7):1115–1129MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fahroo F, Ross IM (2008) Pseudospectral methods for infinite-horizon nonlinear optimal control problems. J Guid Control Dyn 31(4):927–936CrossRefGoogle Scholar
  30. 30.
    Garg D, Patterson M, Hager WW, Rao AV, Benson DA, Huntington GT (2010) A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11):1843–1851MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yan H, Ross IM, Alfriend KT (2007) Pseudospectral feedback control for three-axis magnetic attitude stabilization in elliptic orbits. J Guid Control Dyn 30(4):1107–1115CrossRefGoogle Scholar
  32. 32.
    Ross IM, Sekhavat P, Fleming A, Gong Q (2008) Pseudospectral feedback control: Foundations, examples and experimental results for a new approach. J Guid Control Dyn 31(2):307–321CrossRefGoogle Scholar
  33. 33.
    Tian B, Zong Q (2011) Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method. Acta Astronaut 68(7–8):1176–1184CrossRefGoogle Scholar
  34. 34.
    Zhou H, Rahman T, Wang D, Chen W (2013) Onboard pseudospectral guidance for re-entry vehicle. Proc Inst Mech Eng Part G: J Aerosp Eng 228(11):1925–1936CrossRefGoogle Scholar
  35. 35.
    Yang L, Zhou H, Chen W (2014) Application of linear Gauss pseudospectral method in model predictive control. Acta Astronaut 96:175–187CrossRefGoogle Scholar
  36. 36.
    Tian B, Fan W, Su R, Zong Q (2015) Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans Ind Electron 62(3):1639–1650CrossRefGoogle Scholar
  37. 37.
    Shabana AA (2005) Dynamics of multibody systems, 3rd edn. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  38. 38.
    Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large-scale constrainted optimization. SIAM Rev 47(1):99–131MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bryson AE, Ho YC (1975) Applied optimal control. Hemisphere Publishing, New YorkGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations