Vector method for kinetostatic analysis of planar linkages

Technical Paper
  • 27 Downloads

Abstract

The article reviews the vector method of solving one of the important problems of the dynamic analysis of planar linkages—the kinetostatic analysis, which is to determine the reactions in kinematic pairs and to balance the moment (force) on the driving medium with a given law of motion of the mechanism. This problem is of great practical value when choosing the electric motor and calculating bearings in kinematic pairs. Proposed quality criteria for an optimal kinematic synthesis of linkage mechanism depend only on the geometrical dimensions and are independent of the forces and moments applied to the linkages.

Keywords

Analysis Kinematic Kinetostatic Linkage Mechanism Vector 

References

  1. 1.
    Artobolevski II (1939) Structure, kinematics and kinetostatics of multi-link planar mechanisms (in Russian). ONTI, Moscow Saint-PetersburgGoogle Scholar
  2. 2.
    Vulfson II (2015) Dynamics of cyclic machines. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  3. 3.
    Mohr O (1914) Technische Mechanik, 2. Aufl., Earns & Son, BerlinGoogle Scholar
  4. 4.
    Wittenbauer F (1923) Graphische dynamik. Springer, BerlinCrossRefMATHGoogle Scholar
  5. 5.
    Federhofer K (1932) Graphische Kinematik und kinetostatic. Verlag von Julius Springer, BerlinGoogle Scholar
  6. 6.
    Tolle O (1957) Die verschiedenen Konstruktionen zur Ermittlung des tragheitspols, Feinwerktechn, Jd.61, BerlinGoogle Scholar
  7. 7.
    Zhukovsky NE (1952) Reduction of dynamic problems of the kinematic chain to the problems of the levels. MashGIZ, MoscowGoogle Scholar
  8. 8.
    Assur L, (1952) Research of the planar linkages with lower pairs on the basis of their structure and classification (in Russian), Publishing house of AS of the USSRGoogle Scholar
  9. 9.
    Artobolevski II (1939) Structure, kinematics and kinetostatics of multi-link planar mechanisms (in Russian). ONTI, Moscow Saint-PetersburgGoogle Scholar
  10. 10.
    Baranov GG (1952) Classification, configuration, kinematics and kinetostatics of planar mechanisms with pairs of the first kind (in Russian). Mater Workshop Theory Mach Mech 2(46):15–39Google Scholar
  11. 11.
    Dobrovolsky VV (1953) Theory of mechanisms (in Russian). MashGIZ, MoscowGoogle Scholar
  12. 12.
    Bruevich NG, (1934) Application of vector equations in the kinematics of planar mechanisms (in Russian). Materials of air force academy named after Zhukovsky, Moscow. pp 52–98Google Scholar
  13. 13.
    Zinoviev VA (2015) Theory of mechanisms and machines. Vysshaya Shkola, MoscowGoogle Scholar
  14. 14.
    Bagci C (1971) Static force and torque analysis using 3x3 matrix and transmission criteria for space mechanisms. ASME J Eng Ind 93:90–101CrossRefGoogle Scholar
  15. 15.
    Tari H, Su H (2011) A complex solution framework for the kinetostatic synthesis of a compliant four-bar mechanism. Mech Mach Theory 46:1137–1152CrossRefMATHGoogle Scholar
  16. 16.
    Tari H, Su H, Hauenstein JD (2012) Classification and complete solution of the kinetostatics of a compliant Stewart-Gough platform. Mech Mach Theory 49:177–186CrossRefGoogle Scholar
  17. 17.
    Belfiore N, Simeone P (2013) Inverse kinetostatic analysis of compliant four-bar linkages. Mech Mach Theory 69:350–372CrossRefGoogle Scholar
  18. 18.
    Gregorio R (2014) Position analysis, path planning, and kinetostatics of single-loop RU-(nS)PU wrists. Mech Mach Theory 74:117–133CrossRefGoogle Scholar
  19. 19.
    Lu Y, Wang P, Hou Z, Hua B, Sui C, Han J (2014) Kinetostatic analysis of a novel 6-DoF 3UPS parallel manipulator with multi-fingers. Mech Mach Theory 78:36–50CrossRefGoogle Scholar
  20. 20.
    Venkat K, Ananthasuresh GK, Kumar V (2002) Kinematic and kinetostatic synthesis of planar coupled serial chain mechanisms. J Mech Des ASME 124:301–312CrossRefGoogle Scholar
  21. 21.
    Nicolaides RA, Walkington NJ (1996) Maple: a comprehensive introduction. Cambridge University Press, CambridgeMATHGoogle Scholar
  22. 22.
    Greene RL (2012) Classical mechanics with maple. Springer, New YorkMATHGoogle Scholar
  23. 23.
    Heck A (2011) Introduction to maple. Springer, New YorkMATHGoogle Scholar
  24. 24.
    Matsyuk IN, Shlyakhov EM, Ziborov KA (2010) Power analysis mechanisms by using Mathcad. Theory Mech Mach 8(1):83–88Google Scholar
  25. 25.
    Chace MA (1963) Vector analysis of linkages. ASME Journal. Engineering. Industry. Seria B 55(3):289–297CrossRefGoogle Scholar
  26. 26.
    Lebedev PA (2003) Vector method for the synthesis of mechanisms. Mech Mach Theory 3:265–276MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jomartov AA (2013) Vector model of the timing diagram of an automatic machine. J Mech Sci 4:391–396CrossRefGoogle Scholar
  28. 28.
    Calle G, Durango S, Ruiz O (2010) Analytical method for the kinetostatic analysis of the second class RRR assur group allowing for friction in the kinematic pairs. J Braz Soc Mech Sci Eng 32(3):200–207CrossRefGoogle Scholar
  29. 29.
    Calle G, Hena E, Díaz A, Quintero H (2011) A novel graphical and analytical method for the kinematic analysis of fourth class Assur groups. Rev Fac Ing Univ Antioquia 60:81–91Google Scholar
  30. 30.
    Wang Z, Tao Y, Wen Q (2013) A vector bond graph method of kineto-static analysis for spatial multibody systems. Appl Mech Mater 321–324:1725–1729Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Institute Mechanics and Mechanical EngineeringAlmatyKazakhstan

Personalised recommendations