Effect of metal oxide nanoparticles on the ignition characteristics of diesel fuel droplets: an experimental study

  • Z. Shams
  • M. Moghiman
Technical Paper


The present study experimentally investigates the effect of metal oxide nanoparticles on the ignition probability, ignition zone, and burning time of the diesel fuel. For this purpose, a series of hot plate ignition tests are conducted on the diesel fuel droplets with and without nanoparticles. The comparative performances of the pure diesel and diesel fuel containing 0.03 and 0.05 wt% of Al2O3, CeO2, Fe3O4, and TiO2 nanoparticles are examined. The thermo-physical properties of the nanofuels, including thermal conductivity, viscosity, and heat capacity are also measured. The experimental results show that in the presence of metal oxide nanoparticles, the ignition probability significantly increases. It is observed that cerium oxide nanoparticles show the greatest effect on the ignition probability. In addition, it is found that the minimum hot plate ignition temperature decreases. Results show that the burning time and the ignition zone decrease by adding metal oxide nanoparticles.


Hot surface ignition Ignition probability Ignition zone Burning time Nanoparticles Diesel fuel 


  1. 1.
    Petrou EC, Pappis CP (2009) Biofuels: a survey on pros and cons. Energy Fuels 23(2):1055–1066CrossRefGoogle Scholar
  2. 2.
    Luque R, Lovett JC, Datta B, Clancy J, Campelo JM, Romero AA (2010) Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ Sci 3(11):1706–1721CrossRefGoogle Scholar
  3. 3.
    Basu S, Miglani A (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Int J Heat Mass Transf 96:482–503CrossRefGoogle Scholar
  4. 4.
    Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(2):1819–1838CrossRefGoogle Scholar
  5. 5.
    Chehroudi B (2011) Nanotechnology and applied combustion: use of nanostructured materials for light-activated distributed ignition of fuels with propulsion applications. Recent Pat Space Technol 1(2):107–122CrossRefGoogle Scholar
  6. 6.
    Jones M, Li CH, Afjeh A, Peterson G (2011) Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol). Nanoscale Res Lett 6(1):1–12CrossRefGoogle Scholar
  7. 7.
    Gan Y, Qiao L (2011) Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust Flame 158(2):354–368CrossRefGoogle Scholar
  8. 8.
    Gan Y, Lim YS, Qiao L (2012) Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust Flame 159(4):1732–1740CrossRefGoogle Scholar
  9. 9.
    Tanvir S, Qiao L (2014) Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels. J Propul Power 31(1):408–415CrossRefGoogle Scholar
  10. 10.
    Javed I, Baek SW, Waheed K (2015) Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures. Combust Flame 162(1):191–206CrossRefGoogle Scholar
  11. 11.
    Ooi JB, Ismail HM, Swamy V, Wang X, Swain AK, Rajanren JR (2016) Graphite oxide nanoparticles as diesel fuel additive for cleaner emissions and lower fuel consumption. Energy Fuels 30(2):1341–1353Google Scholar
  12. 12.
    Xiong T, Yuen M (1991) Evaporation of a liquid droplet on a hot plate. Int J Heat Mass Transf 34(7):1881–1894CrossRefGoogle Scholar
  13. 13.
    Michael Bennett J (2001) Ignition of combustible fluids by heated surfaces. Process Saf Prog 20(1):29–36CrossRefGoogle Scholar
  14. 14.
    Colwell JD, Reza A (2005) Hot surface ignition of automotive and aviation fluids. Fire Technol 41(2):105–123CrossRefGoogle Scholar
  15. 15.
    Shaw A, Epling W, McKenna C, Weckman B (2010) Evaluation of the ignition of diesel fuels on hot surfaces. Fire Technol 46(2):407–423CrossRefGoogle Scholar
  16. 16.
    Arifin YM, Furuhata T, Saito M, Arai M (2008) Diesel and bio-diesel fuel deposits on a hot surface. Fuel 87(8):1601–1609CrossRefGoogle Scholar
  17. 17.
    Arifin YM, Arai M (2010) The effect of hot surface temperature on diesel fuel deposit formation. Fuel 89(5):934–942CrossRefGoogle Scholar
  18. 18.
    Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett 8(5):1410–1416CrossRefGoogle Scholar
  19. 19.
    Huang Z, Kan W, Lu Y, Cheng T, Yu L, Hu X (2014) Effect of nanoparticle suspensions on liquid fuel hot-plate ignition. J Nanotechnol Eng Med 5(3):031004CrossRefGoogle Scholar
  20. 20.
    Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin J-P, Guest R, Jenkinson P, Samaras Z (2008) Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study. Inhalation Toxicol 20(6):547–566CrossRefGoogle Scholar
  21. 21.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41(12):2699–2711CrossRefGoogle Scholar
  22. 22.
    Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health, Part A 43(3):278–284CrossRefGoogle Scholar
  23. 23.
    Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732CrossRefGoogle Scholar
  24. 24.
    Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguay RL (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715. CrossRefGoogle Scholar
  25. 25.
    Sharma S, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Thermal Fluid Sci 79:202–212CrossRefGoogle Scholar
  26. 26.
    Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1Google Scholar
  27. 27.
    Wheeler AJ, Ganji AR (1996) Introduction to engineering experimentation. Prentice Hall Englewood Cliffs, NJGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations