Application of the Taguchi method for efficient studying of elevated-temperature incremental forming of a titanium alloy

Technical Paper


The incremental forming technique is a relatively new sheet forming process, normally used for prototype or low-quantity manufacturing of components with complicated geometries. This article is concerned with the warm incremental forming of Ti-6Al-4V titanium alloy. To reduce the time and costs involved for the investigation, on one hand, the groove test which is simple and requires small specimens is employed and, on the other hand, the experiments are designed based on the Taguchi method, which considerably reduces the number of necessary tests. With regard to this, the influence of some important process variables, namely the initial sheet temperature, tool diameter and vertical pitch, on several objective parameters such as forming limit, thickness reduction, drawing depth and the final sample temperature are studied. Based on the Taguchi and variance analyses, the rank and contribution percentage of each process variable are, respectively, determined. In all the cases, there is a good agreement between the results of these analyses. Moreover, the vertical pitch is shown to be the most effective parameter for different objective variables, excepting the final temperature where the tool diameter is the most influencing variable. The optimum test conditions based on various criteria are then specified using the Taguchi method. After conducting the practical experiments with these optimum test conditions, a very good correlation between the relevant findings and the Taguchi predictions are found.


Warm incremental forming Groove test Taguchi method Titanium sheet Optimum conditions 


  1. 1.
    Singh H (2012) Taguchi optimization of process parameters: a review and case study. Int J Adv Eng Res Stud 1(3):39–41Google Scholar
  2. 2.
    Davidson MJ, Balasubramanian K, Tagore G (2008) Experimental investigation on flow-forming of AA6061 alloy—A Taguchi approach. J Mater Process Tech 200(1):283–287CrossRefGoogle Scholar
  3. 3.
    Benardos P, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf 18(5):343–354CrossRefGoogle Scholar
  4. 4.
    Ashrafi A, Khalili K (2015) Investigation on the effects of process parameters in pulsating hydroforming using Taguchi method. Proc Inst Mech Eng Part B J Eng Manuf 230(7):1203–1212CrossRefGoogle Scholar
  5. 5.
    Elangovan K, Narayanan C (2010) Application of Taguchi approach on investigation of formability for perforated Al 8011 sheets. Int J Eng Sci Technol 2(5):300–309CrossRefGoogle Scholar
  6. 6.
    Hwang SY, Kim N, C-s Lee (2015) Numerical investigation on the effect of process parameters during aluminum wheel flow-forming. Stroj Vestn J Mech Eng 61(7–8):471–476CrossRefGoogle Scholar
  7. 7.
    Jeong H, Cheon S, Hong S, Kim N (2015) Preform design of hybrid-forming process to make sheet metal IT products with a sharp edge. J Mech Sci Technol 29(6):2467–2475CrossRefGoogle Scholar
  8. 8.
    Kurra S, Regalla S (2015) Multi-objective optimisation of single point incremental sheet forming using Taguchi-based grey relational analysis. Int J Mater Eng Innov 6(1):74–90CrossRefGoogle Scholar
  9. 9.
    Liu ZB, Li YL, Daniel WJT, Meehan PA (2014) Taguchi optimization of process parameters for forming time in incremental sheet forming process. Materials Science Forum 773–774:137–143Google Scholar
  10. 10.
    Majagi SD, Chandramohan G, Kumar MS (2015) Effect of incremental forming process parameters on aluminum alloy using experimental studies. Adv Mat Res 1119:633–639Google Scholar
  11. 11.
    Kapsiz M, Durat M, Ficici F (2011) Friction and wear studies between cylinder liner and piston ring pair using Taguchi design method. Adv Eng Softw 42(8):595–603CrossRefMATHGoogle Scholar
  12. 12.
    Linton JD, Jiang Q, Gatti CJ, Embrechts MJ (2013) Discussion of Kapsiz, M., Durat, M., Ficici, F. (2011). Friction and wear studies between cylinder liner and piston ring pair using Taguchi design method. Adv Eng Softw 42(8):595–603 (Advances in Engineering Software, (64):71–73) Google Scholar
  13. 13.
    Unal H, Ficici F, Mimaroglu A, Demirkol A, Kırdar A (2015) Prediction and optimization of tribological behavior of nylon composites using Taguchi analysis method. J Braz Soc Mech Sci Eng 38(7):2097–2104CrossRefGoogle Scholar
  14. 14.
    Balootaki MRA, Zamanian R, Ghadimi P (2016) Using Taguchi method for designing wedge-shaped structures for an acoustically non-reflecting test section. J Braz Soc Mech Sci Eng 39(4):1151–1164CrossRefGoogle Scholar
  15. 15.
    Costa DM, Belinato G, Brito TG, Paiva AP, Ferreira JR, Balestrassi PP (2016) Weighted principal component analysis combined with Taguchi’s signal-to-noise ratio to the multiobjective optimization of dry end milling process: a comparative study. J Braz Soc Mech Sci Eng 39(5):1663–1681CrossRefGoogle Scholar
  16. 16.
    Pandivelan C, Jeevanantham A (2015) Formability evaluation of AA 6061 alloy sheets on single point incremental forming using CNC vertical milling machine. J Mater Environ Sci 6:1343–1353Google Scholar
  17. 17.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann-Manuf Technol 54(2):88–114CrossRefGoogle Scholar
  18. 18.
    Durante M, Formisano A, Langella A, Minutolo FMC (2009) The influence of tool rotation on an incremental forming process. J Mater Process Tech 209(9):4621–4626CrossRefGoogle Scholar
  19. 19.
    Kim Y, Park J (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Tech 130:42–46CrossRefGoogle Scholar
  20. 20.
    Khazaali H, Fereshteh-Saniee F (2016) A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique. Int J Adv Manuf Technol 87(9–12):2911–2923CrossRefGoogle Scholar
  21. 21.
    Ambrogio G, Filice L, Manco G (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann-Manuf Technol 57(1):257–260CrossRefGoogle Scholar
  22. 22.
    Ji Y, Park J (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol 201(1):354–358CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Guo H, Xiao F, Gao L, Bondarev A, Han W (2009) Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming. J Mater Process Techol 209(15):5514–5520CrossRefGoogle Scholar
  24. 24.
    Ambrogio G, Bruschi S, Ghiotti A, Filice L (2009) Formability of AZ31 magnesium alloy in warm incremental forming process. Int J Mater Form 2(1):5–8CrossRefGoogle Scholar
  25. 25.
    Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann-Manuf Technol 56(1):273–276CrossRefGoogle Scholar
  26. 26.
    Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng Res Dev 5(3):263–271CrossRefGoogle Scholar
  27. 27.
    Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tool Manuf 48(15):1688–1692CrossRefGoogle Scholar
  28. 28.
    Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49(9–12):941–947CrossRefGoogle Scholar
  29. 29.
    Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68(1–4):241–247CrossRefGoogle Scholar
  30. 30.
    Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Design 40:43–51CrossRefGoogle Scholar
  31. 31.
    Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F (2004) Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann-Manuf Technol 53(1):207–210CrossRefGoogle Scholar
  32. 32.
    Yamashita M, Gotoh M, Atsumi S-Y (2008) Numerical simulation of incremental forming of sheet metal. J Mater Process Technol 199(1):163–172CrossRefGoogle Scholar
  33. 33.
    College S. Minitab. 16 ed: State College; 2010. PA: Minitab, IncGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringBu-Ali Sina UniversityHamedanIran

Personalised recommendations