On the need to adopt strain-based probabilistic approach in predicting fatigue life

  • M. Mahmud
  • S. Abdullah
  • A. K. Ariffin
  • Z. M. Nopiah
Technical Paper
  • 26 Downloads

Abstract

This paper presents a comparison of fatigue life prediction capabilities among three deterministic and one probabilistic strain–life models. Most existing life prediction models are deterministic even though the fatigue process is stochastic in nature. Therefore, variability in experimental fatigue life data is not statistically justified when the deterministic approach is adopted. In this study, the Coffin–Manson, Smith–Watson–Topper, Morrow, and Weibull regression models through the use of Miner’s rule for damage accumulation process are each compared with the experimental data. Both available in the literature, two sets of experimental data for variable amplitude loading and random loading spectrum were used to explore the prediction accuracies of the models. Simulations were based on models to obtain additional results for different levels of maximum strain. They were conducted to investigate the maximum strain–life behaviour under random loading. Fatigue life comparisons were then performed, and the scatter band for type of load, level of strain amplitude, and each model separately were used for evaluations. The results show that the difference percentage in comparison with experimental data varies, but all the predictions are within the acceptable limit, that is, 50% when the factor of 2 was used. Weibull regression model has the lowest normalized-root-mean square error value (0.07) and thus has highest prediction capability among the models. Therefore, the probabilistic model is a better alternative for strain–life prediction compared with deterministic models.

Keywords

Deterministic method Fatigue life Probabilistic method Random Strain–life 

References

  1. 1.
    Zhu S-P, Huang H-Z, Peng W, Wang H-K, Mahadevan S (2016) Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty. Reliabil Eng Syst Saf 146:1–12.  https://doi.org/10.1016/j.ress.2015.10.002 CrossRefGoogle Scholar
  2. 2.
    Lu Z, Liu Y (2011) Experimental investigation of random loading sequence effect on fatigue crack growth. Mater Des 32(10):4773–4785.  https://doi.org/10.1016/j.matdes.2011.06.034 CrossRefGoogle Scholar
  3. 3.
    Wu D, Gao W, Tin-Loi F, Pi Y-L (2016) Probabilistic interval limit analysis for structures with hybrid uncertainty. Eng Struct 114:195–208.  https://doi.org/10.1016/j.engstruct.2016.02.015 CrossRefGoogle Scholar
  4. 4.
    Pinto H, De Jesus AMP, Fernandez-Canteli A, Castillo E, Pereira HFSG (2010) Analysis of constant and variable amplitude strain-life data using a novel probabilistic Weibull regression model. J Pressure Vessel Technol 132(6):061401.  https://doi.org/10.1115/1.4001654 CrossRefGoogle Scholar
  5. 5.
    Sivák P, Ostertagová E (2012) Evaluation of fatigue tests by means of mathematical statistics. Procedia Eng 48:636–642.  https://doi.org/10.1016/j.proeng.2012.09.564 CrossRefGoogle Scholar
  6. 6.
    Schneider CRA, Maddox SJ (2003) Best practice guide on statistical analysis of fatigue data. International Institute of WeldingGoogle Scholar
  7. 7.
    ASTM (2015) Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. ASTM Standard E739-10 (Reapproved 2015). ASTM International.  https://doi.org/10.1520/e0739-10r15
  8. 8.
    Baptista C, Reis A, Nussbaumer A (2017) Probabilistic S-N curves for constant and variable amplitude. Int J Fatigue 101(2):312–327.  https://doi.org/10.1016/j.ijfatigue.2017.01.022 CrossRefGoogle Scholar
  9. 9.
    ASME (2005) Test Uncertainty. ASME PTC 19.1-2005. The American Society of Mechanical EngineersGoogle Scholar
  10. 10.
    De Jesus AMP, Pinto H, Fernández-Canteli A, Castillo E, Correia JAFO (2010) Fatigue assessment of a riveted shear splice based on a probabilistic model. Int J Fatigue 32:453–462.  https://doi.org/10.1016/j.ijfatigue.2009.09.004 CrossRefGoogle Scholar
  11. 11.
    Correia JAFO, De Jesus AMP, Fernández-Canteli A (2013) Local unified probabilistic model for fatigue crack initiation and propagation: application to a notched geometry. Eng Struct 52:394–407.  https://doi.org/10.1016/j.engstruct.2013.03.009 CrossRefGoogle Scholar
  12. 12.
    Muniz-Calvente M, de Jesus AMP, Correia JAFO, Fernández-Canteli A (2017) A methodology for probabilistic prediction of fatigue crack initiation taking into account the scale effect. Eng Fract Mech.  https://doi.org/10.1016/j.engfracmech.2017.04.014 Google Scholar
  13. 13.
    Gallegos Mayorga L, Sire S, Correia JAFO, De Jesus AMP, Rebelo C, Fernández-Canteli A, Ragueneau M, Plu B (2017) Statistical evaluation of fatigue strength of double shear riveted connections and crack growth rates of materials from old bridges. Eng Fract Mech.  https://doi.org/10.1016/j.engfracmech.2017.05.039 Google Scholar
  14. 14.
    Fernández-Canteli A, Przybilla C, Nogal M, Aenlle ML, Castillo E (2014) ProFatigue: a software program for probabilistic assessment of experimental fatigue data sets. Procedia Eng 74:236–241.  https://doi.org/10.1016/j.proeng.2014.06.255 CrossRefGoogle Scholar
  15. 15.
    Fernández-Canteli A, Castillo E, López-Aenlle M, Seitl S (2010) Using statistical compatibility to derive advanced probabilistic fatigue models. Procedia Eng 2(1):1131–1140.  https://doi.org/10.1016/j.proeng.2010.03.122 CrossRefGoogle Scholar
  16. 16.
    Apetre N, Arcari A, Dowling N, Iyyer N, Phan N (2015) Probabilistic model of mean stress effects in strain-life fatigue. Procedia Eng 114:538–545.  https://doi.org/10.1016/j.proeng.2015.08.103 CrossRefGoogle Scholar
  17. 17.
    Correia J, Apetre N, Arcari A, De Jesus A, Muñiz-Calvente M, Calçada R, Berto F, Fernández-Canteli A (2017) Generalized probabilistic model allowing for various fatigue damage variables. Int J Fatigue.  https://doi.org/10.1016/j.ijfatigue.2017.03.031 Google Scholar
  18. 18.
    Castillo E, Fernández-Canteli A (2009) A unified statistical methodology for modeling fatigue damage. Springer, SpainMATHGoogle Scholar
  19. 19.
    Fernández-Canteli A, Blasón S, Correia JAFO, De Jesus AMP (2014) A probabilistic interpretation of the Miner number for fatigue life prediction. Frattura ed Integrità Strutturale 30:327–339.  https://doi.org/10.3221/IGF-ESIS.30.40 Google Scholar
  20. 20.
    Correia JAFO, Jesus A, Blasón S, Calvente M, Fernández-Canteli A Probabilistic non-linear cumulative fatigue damage of the P355NL1 pressure vessel steel. In: ASME 2016 Pressure Vessels and Piping Conference, 2016.  https://doi.org/10.1115/pvp2016-63920
  21. 21.
    Fernández-Canteli A (1982) Statistical interpretation of the miner-number using an index of probability of total damage. Fatigue of steel and concrete structures. IABSE, ZürichGoogle Scholar
  22. 22.
    Blason S, Correia JAFO, Jesus AMPD, Calcada RAB, Fernandez-Canteli A (2016) A probabilistic analysis of Miner’s law for different loading conditions. Struct Eng Mech 60(1):71–90.  https://doi.org/10.12989/sem.2016.60.1.071 CrossRefGoogle Scholar
  23. 23.
    Wang Y, Susmel L (2016) The Modified Manson-Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading. Int J Fatigue 83:135–149.  https://doi.org/10.1016/j.ijfatigue.2015.10.005 CrossRefGoogle Scholar
  24. 24.
    Ince A, Glinka G (2011) A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue Fract Eng Mater Struct 34(11):854–867.  https://doi.org/10.1111/j.1460-2695.2011.01577.x CrossRefGoogle Scholar
  25. 25.
    Castillo E, Fernández-Canteli A, Pinto H, López-Aenlle M (2008) A general regression model for statistical analysis of strain–life fatigue data. Mater Lett 62(21–22):3639–3642.  https://doi.org/10.1016/j.matlet.2008.04.015 CrossRefGoogle Scholar
  26. 26.
    Caiza PDT, Ummenhofer T (2011) General probability weighted moments for the three-parameter Weibull Distribution and their application in S-N curves modelling. Int J Fatigue 33(12):1533–1538.  https://doi.org/10.1016/j.ijfatigue.2011.06.009 CrossRefGoogle Scholar
  27. 27.
    Pereira HFSG, De Jesus AMP, Ribeiro AS, Fernandes AA (2009) Cyclic and fatigue behavior of the P355NL1 steel under block loading. J Pressure Vessel Technol 131(2):021210.  https://doi.org/10.1115/1.3062965 CrossRefGoogle Scholar
  28. 28.
    Colin J, Fatemi A (2010) Variable amplitude cyclic deformation and fatigue behaviour of stainless steel 304L including step, periodic, and random loadings. Fatigue Fract Eng Mater Struct 33(4):205–220.  https://doi.org/10.1111/j.1460-2695.2009.01429.x CrossRefGoogle Scholar
  29. 29.
    Li BC, Jiang C, Han X, Li Y (2015) A new approach of fatigue life prediction for metallic materials under multiaxial loading. Int J Fatigue 78:1–10.  https://doi.org/10.1016/j.ijfatigue.2015.02.022 CrossRefGoogle Scholar
  30. 30.
    Chen H, Chen Y, Yang Z (2014) Coupling damage and reliability model of low-cycle fatigue and high energy impact based on the local stress–strain approach. Chin J Aeronaut 27(4):846–855.  https://doi.org/10.1016/j.cja.2014.03.008 CrossRefGoogle Scholar
  31. 31.
    Kamaya M, Kawakubo M (2015) Loading sequence effect on fatigue life of Type 316 stainless steel. Int J Fatigue 81:10–20.  https://doi.org/10.1016/j.ijfatigue.2015.07.009 CrossRefGoogle Scholar
  32. 32.
    Zakaria KA, Abdullah S, Ghazali MJ, Azhari CH (2013) Influence of spectrum loading sequences on fatigue life in a high-temperature environment. Eng Fail Anal 30:111–123.  https://doi.org/10.1016/j.engfailanal.2013.01.008 CrossRefGoogle Scholar
  33. 33.
    Klemenc J, Fajdiga M (2013) Joint estimation of E-N curves and their scatter using evolutionary algorithms. Int J Fatigue 56:42–53.  https://doi.org/10.1016/j.ijfatigue.2013.08.005 CrossRefGoogle Scholar
  34. 34.
    Zhu SP, Lei Q, Huang HZ, Yang YJ, Peng W (2016) Mean stress effect correction in strain energy-based fatigue life prediction of metals. Int J Damage Mech.  https://doi.org/10.1177/1056789516651920 Google Scholar
  35. 35.
    Vormwald M (2015) Classification of load sequence effects in metallic structures. Procedia Engineering 101:534–542.  https://doi.org/10.1016/j.proeng.2015.02.064 CrossRefGoogle Scholar
  36. 36.
    Klemenc J, Fajdiga M (2012) Estimating S-N curves and their scatter using a differential ant-stigmergy algorithm. Int J Fatigue 43:90–97.  https://doi.org/10.1016/j.ijfatigue.2012.02.015 CrossRefGoogle Scholar
  37. 37.
    Herrera-Solaz V, Niffenegger M (2017) Application of hysteresis energy criterion in a microstructure-based model for fatigue crack initiation and evolution in austenitic stainless steel. Int J Fatigue.  https://doi.org/10.1016/j.ijfatigue.2017.03.014 Google Scholar
  38. 38.
    Pereira HFSG, DuQuesnay DL, AlMP De Jesus, Silva ALL (2009) Analysis of variable amplitude fatigue data of the P355NL1 steel using the effective strain damage model. J Pressure Vessel Technol 131(5):051402.  https://doi.org/10.1115/1.3147986 CrossRefGoogle Scholar
  39. 39.
    Karolczuk A (2016) Analysis of revised fatigue life calculation algorithm under proportional and non-proportional loading with constant amplitude. Int J Fatigue 88:111–120.  https://doi.org/10.1016/j.ijfatigue.2016.03.027 CrossRefGoogle Scholar
  40. 40.
    Shamsaei N, McKelvey SA (2014) Multiaxial life predictions in absence of any fatigue properties. Int J Fatigue 67:62–72.  https://doi.org/10.1016/j.ijfatigue.2014.02.020 CrossRefGoogle Scholar
  41. 41.
    Hariharan K, Prakash RV, Prasad MS (2011) Weighted error criterion to evaluate strain-fatigue life prediction methods. Int J Fatigue 33:727–734.  https://doi.org/10.1016/j.ijfatigue.2010.11.021 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Department of Mechanical & Materials Engineering, Faculty of Engineering & Built EnvironmentUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Centre for Automotive Research, Faculty of Engineering & Built EnvironmentUniversiti Kebangsaan Malaysia (UKM)SelangorMalaysia

Personalised recommendations