Advertisement

Applications of the Lie symmetries to complete solution of a bead on a rotating wire hoop

  • Cláudio H. C. Costa Basquerotto
  • Edison Righetto
  • Samuel da Silva
Technical Paper
  • 88 Downloads

Abstract

The existence of Lie symmetries in differential equations can generate transformations in the dependent and independent variables and obtain new equations that may be easier to integrate. In particular, in some situations, one can reduce the order and it is possible to obtain first integrals. Thus, this article presents the application of the fundamental Lie theorem to obtain the complete solution of a classical nonlinear problem of the dynamics of mechanical systems: the bead on a rotating wire hoop. From the first integral obtained with the Lie symmetry generators, the exact solution can be found with the aid of the Jacobi elliptic functions.

Keywords

Lie symmetries Classical mechanics Jacobi elliptic functions 

Notes

Acknowledgements

The first author would like to thank his scholarship from CAPES and the financial support provided during his stay at the University of Minnesota (USA). The authors are also grateful for the financial support provided by National Council for Scientific and Technological Development (CNPq - Brazil) Grant number 404463/2016-9 that intends to popularize the Lie theory in the engineering community. Additionally, the authors would like to thank the anonymous reviewers and the Associate Editor for their relevant comments and useful suggestions. The authors also thank the comments and revision performed by Prof. Peter J. Olver and we would like to thank his kind hospitality during the stay of the first author in Minnesota.

Compliance with ethical standards

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Zhai WM (1996) Two simple fast integration methods for large-scale dynamic problems in engineering. Int J Numer Methods Eng 39(24):4199–4214MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Roychowdhury J (2001) Analyzing circuits with widely separated time scales using numerical pde methods. IEEE Trans Circ Syst I Fund Theory Appl 48(5):578–594.  https://doi.org/10.1109/81.922460 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Schunck N, Dobaczewski J, McDonnell J, Satua W, Sheikh J, Staszczak A, Stoitsov M, Toivanen P (2012) Solution of the Skyrme Hartree Fock Bogolyubov equations in the cartesian deformed harmonic-oscillator basis. Comput Phys Commun 183(1):166–192.  https://doi.org/10.1016/j.cpc.2011.08.013 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chapra SC, Canale RP (1998) Numerical methods for engineers, vol 2. McGraw-Hill, New York CityGoogle Scholar
  5. 5.
    Lie S, Scheffers G (1891) Vorlesungen Über differentialgleichungen mit bekannten infinitesimalen transformationen. B.G. Teubner, LeipzigMATHGoogle Scholar
  6. 6.
    Bluman G, Anco S (2008) Symmetry and integration methods for differential equations, vol 154. Springer Science & Business Media, New YorkMATHGoogle Scholar
  7. 7.
    Anderson RL, Davison SM (1974) A generalization of Lie’s “counting” theorem for second-order ordinary differential equations. J Math Anal Appl 48(1):301 – 315. http://www.sciencedirect.com/science/article/pii/0022247X74902364
  8. 8.
    Olver PJ (1986) Applications of Lie groups to differential equations, 2nd edn. Springer US, New York, p 107Google Scholar
  9. 9.
    Mahomed F, Leach P (1990) Symmetry Lie algebras of nth order ordinary differential equations. J Math Anal Appl 151(1):80 – 107. http://www.sciencedirect.com/science/article/pii/0022247X9090244A
  10. 10.
    Quispel G, Sahadevan R (1993) Lie symmetries and the integration of difference equations. Phys Lett A 184(1):64 – 70. http://www.sciencedirect.com/science/article/pii/0375960193903473
  11. 11.
    Cantwell BJ (2002) Introduction to symmetry analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  12. 12.
    Olver PJ, Pohjanpelto J (2009) Differential invariant algebras of Lie pseudo-groups. Adv Math 222(5):1746–1792.  https://doi.org/10.1016/j.aim.2009.06.016 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rosa M, Bruzón M, Gandarias M (2015) Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinates. Commun Nonlinear Sci Numer Simul 25(1–3):74–83.  https://doi.org/10.1016/j.cnsns.2015.01.010 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Erdmann K, Wildon MJ (2006) Introduction to Lie Algebras, 1 edn. No. 1 in 1615-2085. Springer-Verlag, LondonGoogle Scholar
  15. 15.
    Kochetov BA (2014) Lie group symmetries and Riemann function of Klein-Gordon-Fock equation with central symmetry. Commun Nonlinear Sci Numer Simul 19(6):1723–1728.  https://doi.org/10.1016/j.cnsns.2013.10.001 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ambrose DM, Kelliher JP, Filho MCL, Lopes HJN (2015) Serfati solutions to the 2D Euler equations on exterior domains. J Differ Equ 259(9):4509–4560.  https://doi.org/10.1016/j.jde.2015.06.001 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Clarkson PA, Mansfield EL (1994) Symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys D Nonlin Phenomena 70(3):250 – 288. http://www.sciencedirect.com/science/article/pii/0167278994900175
  18. 18.
    Paliathanasis A, Tsamparlis M (2012) Lie point symmetries of a general class of pdes: The heat equation. J Geom Phys 62(12):2443–2456.  https://doi.org/10.1016/j.geomphys.2012.09.004 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Stepanova IV (2015) Symmetry analysis of nonlinear heat and mass transfer equations under Soret effect. Commun Nonlinear Sci Numer Simul 20(3):684–691.  https://doi.org/10.1016/j.cnsns.2014.06.043 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Craddock M (2000) Symmetry groups of linear partial differential equations and representation theory: the Laplace and axially symmetric wave equations. J Differ Equ 166(1):107–131.  https://doi.org/10.1006/jdeq.2000.3786 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mustafa M, Al-Dweik AY (2015) Noether symmetries and conservation laws of wave equation on static spherically symmetric spacetimes with higher symmetries. Commun Nonlinear Sci Numer Simul 23(1–3):141–152.  https://doi.org/10.1016/j.cnsns.2014.11.011 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Soh CW (2008) Euler-Bernoulli beams from a symmetry standpoint-characterization of equivalent equations. J Math Anal Appl 345(1):387–395.  https://doi.org/10.1016/j.jmaa.2008.04.023 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Liu CS (2015) Elastoplastic models and oscillators solved by a Lie-group differential algebraic equations method. Int J Non-Linear Mech 69:93–108.  https://doi.org/10.1016/j.ijnonlinmec.2014.11.025 CrossRefGoogle Scholar
  24. 24.
    Bartsch T, Ding Y (2001) Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry. Nonlinear Anal Theory Methods Appl 44(6):727 – 748. http://www.sciencedirect.com/science/article/pii/S0362546X99003028
  25. 25.
    Bocko J, Nohajová V, Harčarik T (2012) Symmetries of differential equations describing beams and plates on elastic foundations. Proced Eng 48:40 – 45 (2012). http://www.sciencedirect.com/science/article/pii/S1877705812045468. (modelling of mechanical and mechatronics systems)
  26. 26.
    Goldstein H (1965) Classical mechanics. Pearson Education IndiaGoogle Scholar
  27. 27.
    Lemos NA (2007) Mecânica Analítica, 2nd edn. Editora Livraria da Física, São Paulo, SP, BrasilGoogle Scholar
  28. 28.
    Johnson AK, Rabchuk JA (2009) A bead on a hoop rotating about a horizontal axis: a one-dimensional ponderomotive trap. Am J Phys 77(11):1039–1048.  https://doi.org/10.1119/1.3167216 CrossRefGoogle Scholar
  29. 29.
    Baker TE, Bill A (2012) Jacobi elliptic functions and the complete solution to the bead on the hoop problem. Am J Phys 80(6):506–514.  https://doi.org/10.1119/1.3682321 CrossRefGoogle Scholar
  30. 30.
    Burov AB, Yakushev I (2014) Bifurcations of the relative equilibria of a heavy bead on a rotating hoop with dry friction. J Appl Math Mech 78(5):460–467.  https://doi.org/10.3103/S0025654416040038 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lutzky M (1979) Dynamical symmetries and conserved quantities. J Phys A Math General 12(7):973. http://iopscience.iop.org/0305-4470/12/7/012
  32. 32.
    Blumman GW, Kumei S (1989) Symmetries and differential equations. Applied mathematical sciences, vol 81. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Baumann G (2000) Symmetry analysis of differential equations with mathematica, 1st edn. Springer, USACrossRefMATHGoogle Scholar
  34. 34.
    Bagderina YY (2014) Symmetries and invariants of the systems of two linear second-order ordinary differential equations. Commun Nonlinear Sci Numer Simul 19(10):3513–3522MathSciNetCrossRefGoogle Scholar
  35. 35.
    Bluman G (1990) Simplifying the form of Lie groups admitted by a given differential equation. J Math Anal Appl 145(1):52 – 62. http://www.sciencedirect.com/science/article/pii/0022247X9090431E
  36. 36.
    Dimas S, Tsoubelis D (2004) Sym: a new symmetry-finding package for Mathematica. In: Proceedings of the 10th international conference in modern group analysis, pp 64–70Google Scholar
  37. 37.
    Wulfman CE, Wybourne BG (1976) The Lie group of Newton’s and Lagrange’s equations for the harmonic oscillator. J Phys A Math General 9(4):507. http://stacks.iop.org/0305-4470/9/i=4/a=007
  38. 38.
    Gordon TJ (1986) On the symmetries and invariants of the harmonic oscillator. J Phys A Math General 19(2):183. http://stacks.iop.org/0305-4470/19/i=2/a=014
  39. 39.
    Lemos NA (2017) Oscilador quártico e funções elípticas de Jacobi. Revista Brasileira de Ensino de Física, 39(1).  https://doi.org/10.1590/1806-9126-RBEF-2016-0175
  40. 40.
    Zayed EME, Al-Nowehy AG (2017) New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Compl Media 27(3):420–439.  https://doi.org/10.1080/17455030.2016.1259690 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Cláudio H. C. Costa Basquerotto
    • 1
  • Edison Righetto
    • 1
  • Samuel da Silva
    • 1
  1. 1.Departamento de Engenharia MecânicaUniversidade Estadual Paulista, UNESP, Faculdade de Engenharia de Ilha SolteiraIlha SolteiraBrazil

Personalised recommendations